Suppr超能文献

光照和温度线索对植物转录程序的独特和对比影响。

Unique and contrasting effects of light and temperature cues on plant transcriptional programs.

机构信息

Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB , Barcelona, Spain.

John Innes Centre, Norwich Research Park , Norwich, UK.

出版信息

Transcription. 2020 Jun-Aug;11(3-4):134-159. doi: 10.1080/21541264.2020.1820299. Epub 2020 Oct 4.

Abstract

Plants have adapted to tolerate and survive constantly changing environmental conditions by reprogramming gene expression in response to stress or to drive developmental transitions. Among the many signals that plants perceive, light and temperature are of particular interest due to their intensely fluctuating nature which is combined with a long-term seasonal trend. Whereas specific receptors are key in the light-sensing mechanism, the identity of plant thermosensors for high and low temperatures remains far from fully addressed. This review aims at discussing common as well as divergent characteristics of gene expression regulation in plants, controlled by light and temperature. Light and temperature signaling control the abundance of specific transcription factors, as well as the dynamics of co-transcriptional processes such as RNA polymerase elongation rate and alternative splicing patterns. Additionally, sensing both types of cues modulates gene expression by altering the chromatin landscape and through the induction of long non-coding RNAs (lncRNAs). However, while light sensing is channeled through dedicated receptors, temperature can broadly affect chemical reactions inside plant cells. Thus, direct thermal modifications of the transcriptional machinery add another level of complexity to plant transcriptional regulation. Besides the rapid transcriptome changes that follow perception of environmental signals, plant developmental transitions and acquisition of stress tolerance depend on long-term maintenance of transcriptional states (active or silenced genes). Thus, the rapid transcriptional response to the signal (Phase I) can be distinguished from the long-term memory of the acquired transcriptional state (Phase II - remembering the signal). In this review we discuss recent advances in light and temperature signal perception, integration and memory in , focusing on transcriptional regulation and highlighting the contrasting and unique features of each type of cue in the process.

摘要

植物通过响应胁迫或驱动发育转变来重新编程基因表达,从而适应和生存于不断变化的环境条件。在植物感知的众多信号中,光和温度因其强烈波动的性质与长期的季节性趋势相结合而特别引人注目。虽然特定的受体是光感机制中的关键,但植物对高温和低温的热传感器的身份仍远未完全确定。

本综述旨在讨论受光和温度控制的植物基因表达调控的共同和不同特征。光和温度信号控制特定转录因子的丰度,以及共转录过程的动态,如 RNA 聚合酶延伸率和可变剪接模式。此外,通过改变染色质景观和诱导长非编码 RNA(lncRNA),两种类型的线索都可以调节基因表达。然而,虽然光感是通过专门的受体进行的,但温度可以广泛影响植物细胞内的化学反应。因此,转录机制的直接热修饰为植物转录调控增加了另一层复杂性。

除了对环境信号的感知后迅速发生的转录组变化外,植物发育转变和获得应激耐受性还依赖于转录状态的长期维持(激活或沉默基因)。因此,信号的快速转录反应(第一阶段)可以与获得的转录状态的长期记忆(第二阶段-记住信号)区分开来。在本综述中,我们讨论了光和温度信号感知、整合和记忆的最新进展,重点讨论了转录调控,并突出了每种类型的线索在该过程中的对比和独特特征。

相似文献

2
Epigenomics in stress tolerance of plants under the climate change.植物在气候变化下的应激耐受中的表观基因组学。
Mol Biol Rep. 2023 Jul;50(7):6201-6216. doi: 10.1007/s11033-023-08539-6. Epub 2023 Jun 9.

本文引用的文献

1
Temperature-dependent growth contributes to long-term cold sensing.温度依赖性生长有助于长期冷感。
Nature. 2020 Jul;583(7818):825-829. doi: 10.1038/s41586-020-2485-4. Epub 2020 Jul 15.
2
An RNA thermoswitch regulates daytime growth in Arabidopsis.一种 RNA 热开关调节拟南芥的日间生长。
Nat Plants. 2020 May;6(5):522-532. doi: 10.1038/s41477-020-0633-3. Epub 2020 Apr 13.
3
Chromatin replication and epigenetic cell memory.染色质复制和表观遗传细胞记忆。
Nat Cell Biol. 2020 Apr;22(4):361-371. doi: 10.1038/s41556-020-0487-y. Epub 2020 Mar 30.
4
Shedding light on the chromatin changes that modulate shade responses.阐明调节颜色反应的染色质变化。
Physiol Plant. 2020 Jul;169(3):407-417. doi: 10.1111/ppl.13101. Epub 2020 Apr 14.
6
Mechanisms of Cryptochrome-Mediated Photoresponses in Plants.植物中隐花色素介导的光响应机制。
Annu Rev Plant Biol. 2020 Apr 29;71:103-129. doi: 10.1146/annurev-arplant-050718-100300. Epub 2020 Mar 13.
9
Organismal benefits of transcription speed control at gene boundaries.基因边界转录速度控制的生物效益。
EMBO Rep. 2020 Apr 3;21(4):e49315. doi: 10.15252/embr.201949315. Epub 2020 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验