Suppr超能文献

解决国家尺度最大日负荷总量与本地化土地管理决策之间的空间脱节问题。

Addressing the spatial disconnect between national-scale total maximum daily loads and localized land management decisions.

机构信息

Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA.

USDA-ARS Pasture System and Watershed Management Research Unit, University Park, PA, 16802, USA.

出版信息

J Environ Qual. 2020 May;49(3):613-627. doi: 10.1002/jeq2.20051. Epub 2020 Mar 25.

Abstract

Regulatory watershed mitigation programs typically emphasize widespread adoption of best management practices (BMPs) to meet total maximum daily load (TMDL) goals. To comply with the Chesapeake Bay TMDL, jurisdictions must develop watershed implementation plans (WIPs) to determine the number and type of BMPs to implement. However, the spatial resolution of the bay-level model used to determine these load reduction goals is so coarse that the regulatory plan cannot consider heterogeneity in local conditions, which affects BMP effectiveness. Using the Topo-SWAT modification of the Soil and Water Assessment Tool (SWAT), we simulated two BMP adoption scenarios in the Spring Creek watershed in central Pennsylvania to determine if leveraging fine-scale spatial heterogeneity to place BMPs could achieve the same (or better) nutrient and sediment reduction at a lower cost than the state-level WIP BMP adoption recommendations. Topo-SWAT was initialized with detailed land use and management practice information, systematically calibrated, and validated against 12 yr of observed data. After determining individual BMP cost effectiveness, results were ranked to design a cost-effective BMP adoption scenario that achieved equal or greater load reduction as the WIP scenario for 74% of the cost using eight management-based BMPs: no-till, manure injection, cover cropping, riparian buffers, land retirement, manure application timing, wetland restoration, and nitrogen management (15% less N input). Because watersheds of this size typically represent the smallest modeling unit in the Chesapeake Bay Model, results demonstrate the potential to use watershed models with finer inference scales to improve recommendations for BMP implementation under the Chesapeake Bay TMDL.

摘要

监管流域缓解计划通常强调广泛采用最佳管理实践 (BMP) 来实现最大日负荷总量 (TMDL) 目标。为了遵守切萨皮克湾 TMDL,各管辖区必须制定流域实施计划 (WIP) 来确定要实施的 BMP 的数量和类型。然而,用于确定这些负荷削减目标的湾级模型的空间分辨率如此粗糙,以至于监管计划无法考虑影响 BMP 效果的当地条件的异质性。我们使用土壤和水评估工具 (SWAT) 的 Topo-SWAT 版本模拟了宾夕法尼亚州中部斯普林克里克流域的两种 BMP 采用情景,以确定利用细尺度空间异质性来布置 BMP 是否可以以更低的成本实现与州级 WIP BMP 采用建议相同(或更好)的养分和沉积物削减。Topo-SWAT 使用详细的土地利用和管理实践信息进行初始化,经过系统校准,并根据 12 年的观测数据进行验证。在确定单个 BMP 的成本效益后,根据结果进行排名,设计了一种具有成本效益的 BMP 采用情景,该情景使用基于管理的 8 种 BMP(免耕、粪肥注入、覆盖作物、河岸缓冲区、土地休耕、粪肥施用时间、湿地恢复和氮管理(减少 15%的 N 输入)),以 74%的成本实现与 WIP 情景相同或更大的负荷削减,该情景实现了相同或更大的负荷削减,成本仅为 WIP 情景的 74%。由于这种规模的流域通常代表切萨皮克湾模型中的最小建模单元,因此结果表明有可能使用具有更精细推断尺度的流域模型来改进切萨皮克湾 TMDL 下 BMP 实施的建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec5/7317802/cd8bde8fdc54/JEQ2-49-613-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验