Suppr超能文献

基因组选择的训练群体优化。

Training Population Optimization for Genomic Selection.

机构信息

Dep. of Agronomy, Univ. of Wisconsin - Madison, 1575 Linden Dr., Madison, WI, 53706.

Statistics Dep., Facultad de Agronomía, Univ. de la República, Garzón 780, Montevideo, 12900, Uruguay.

出版信息

Plant Genome. 2019 Nov;12(3):1-14. doi: 10.3835/plantgenome2019.04.0028.

Abstract

Training populations can be optimized for specific testing populations. Optimized training populations are smaller, more related, and more predictive. Stratified sampling with a relationship matrix weighted by marker effect is optimal. The effectiveness of genomic selection in breeding programs depends on the phenotypic quality and depth, the prediction model, the number and type of molecular markers, and the size and composition of the training population (TR). Furthermore, population structure and diversity have a key role in the composition of the optimal training sets. Our goal was to compare strategies for optimizing the TR for specific testing populations (TE). A total of 1353 wheat (Triticum aestivum L.) and 644 rice (Oryza sativa L.) advanced lines were evaluated for grain yield in multiple environments. Several within-TR optimization strategies were compared to identify groups of individuals with increased predictive ability. Additionally, optimization strategies to choose individuals from the TR with higher predictive ability for a specific TE were compared. There is a benefit in considering both the population structure and the relationship between the TR and the TE when designing an optimal TR for genomic selection. A weighted relationship matrix with stratified sampling is the best strategy for forward predictions of quantitative traits in populations several generations apart.

摘要

可以针对特定的测试群体优化训练群体。优化后的训练群体更小、更相关、更具预测性。使用基于标记效应的关系矩阵进行分层抽样是最优的。基因组选择在育种计划中的有效性取决于表型质量和深度、预测模型、分子标记的数量和类型以及训练群体(TR)的大小和组成。此外,群体结构和多样性在最优训练集的组成中起着关键作用。我们的目标是比较针对特定测试群体(TE)优化 TR 的策略。对 1353 个小麦(Triticum aestivum L.)和 644 个水稻(Oryza sativa L.)近交系在多个环境中进行了籽粒产量评估。比较了几种 TR 内优化策略,以确定具有更高预测能力的个体组。此外,还比较了选择 TR 中对特定 TE 具有更高预测能力的个体的优化策略。在设计基因组选择的最优 TR 时,同时考虑群体结构和 TR 与 TE 之间的关系是有益的。对于几代分离的群体中定量性状的正向预测,使用基于分层抽样的加权关系矩阵是最佳策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验