Suppr超能文献

用于痴呆症特征描述的脑电图源空间连通性的多指标多中心协调评估。

Harmonized multi-metric and multi-centric assessment of EEG source space connectivity for dementia characterization.

作者信息

Prado Pavel, Mejía Jhony A, Sainz-Ballesteros Agustín, Birba Agustina, Moguilner Sebastian, Herzog Rubén, Otero Mónica, Cuadros Jhosmary, Z-Rivera Lucía, O'Byrne Daniel Franco, Parra Mario, Ibáñez Agustín

机构信息

Latin American Brain Health Institute (BrainLat) Universidad Adolfo Ibáñez Santiago de Chile Chile.

Escuela de Fonoaudiología Facultad de Odontología y Ciencias de la Rehabilitación Universidad San Sebastián Santiago Chile.

出版信息

Alzheimers Dement (Amst). 2023 Jul 8;15(3):e12455. doi: 10.1002/dad2.12455. eCollection 2023 Jul-Sep.

Abstract

INTRODUCTION

Harmonization protocols that address batch effects and cross-site methodological differences in multi-center studies are critical for strengthening electroencephalography (EEG) signatures of functional connectivity (FC) as potential dementia biomarkers.

METHODS

We implemented an automatic processing pipeline incorporating electrode layout integrations, patient-control normalizations, and multi-metric EEG source space connectomics analyses.

RESULTS

Spline interpolations of EEG signals onto a head mesh model with 6067 virtual electrodes resulted in an effective method for integrating electrode layouts. Z-score transformations of EEG time series resulted in source space connectivity matrices with high bilateral symmetry, reinforced long-range connections, and diminished short-range functional interactions. A composite FC metric allowed for accurate multicentric classifications of Alzheimer's disease and behavioral variant frontotemporal dementia.

DISCUSSION

Harmonized multi-metric analysis of EEG source space connectivity can address data heterogeneities in multi-centric studies, representing a powerful tool for accurately characterizing dementia.

摘要

引言

在多中心研究中,解决批次效应和跨站点方法差异的协调方案对于强化作为潜在痴呆生物标志物的功能连接(FC)的脑电图(EEG)特征至关重要。

方法

我们实施了一个自动处理流程,该流程纳入了电极布局整合、患者-对照标准化以及多指标EEG源空间连接组学分析。

结果

将EEG信号样条插值到具有6067个虚拟电极的头部网格模型上,产生了一种有效的电极布局整合方法。EEG时间序列的Z分数变换产生了具有高双侧对称性、增强的长程连接和减弱的短程功能相互作用的源空间连接矩阵。一个复合FC指标允许对阿尔茨海默病和行为变异型额颞叶痴呆进行准确的多中心分类。

讨论

EEG源空间连接的协调多指标分析可以解决多中心研究中的数据异质性问题,是准确表征痴呆的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db84/10329259/45d5c30b55f8/DAD2-15-e12455-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验