Suppr超能文献

一种评估肝外胆管癌分化程度和淋巴结转移的新方法:基于放射组学的粒子群优化和支持向量机模型预测

A Novel Approach to Assessing Differentiation Degree and Lymph Node Metastasis of Extrahepatic Cholangiocarcinoma: Prediction Using a Radiomics-Based Particle Swarm Optimization and Support Vector Machine Model.

作者信息

Yao Xiaopeng, Huang Xinqiao, Yang Chunmei, Hu Anbin, Zhou Guangjin, Lei Jianbo, Shu Jian

机构信息

School of Medical Information and Engineering, Southwest Medical University, Luzhou, China.

Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China.

出版信息

JMIR Med Inform. 2020 Oct 5;8(10):e23578. doi: 10.2196/23578.

Abstract

BACKGROUND

Radiomics can improve the accuracy of traditional image diagnosis to evaluate extrahepatic cholangiocarcinoma (ECC); however, this is limited by variations across radiologists, subjective evaluation, and restricted data. A radiomics-based particle swarm optimization and support vector machine (PSO-SVM) model may provide a more accurate auxiliary diagnosis for assessing differentiation degree (DD) and lymph node metastasis (LNM) of ECC.

OBJECTIVE

The objective of our study is to develop a PSO-SVM radiomics model for predicting DD and LNM of ECC.

METHODS

For this retrospective study, the magnetic resonance imaging (MRI) data of 110 patients with ECC who were diagnosed from January 2011 to October 2019 were used to construct a radiomics prediction model. Radiomics features were extracted from T1-precontrast weighted imaging (T1WI), T2-weighted imaging (T2WI), and diffusion-weighted imaging (DWI) using MaZda software (version 4.6; Institute of Electronics, Technical University of Lodz). We performed dimension reduction to obtain 30 optimal features of each sequence, respectively. A PSO-SVM radiomics model was developed to predict DD and LNM of ECC by incorporating radiomics features and apparent diffusion coefficient (ADC) values. We randomly divided the 110 cases into a training group (88/110, 80%) and a testing group (22/110, 20%). The performance of the model was evaluated by analyzing the area under the receiver operating characteristic curve (AUC).

RESULTS

A radiomics model based on PSO-SVM was developed by using 110 patients with ECC. This model produced average AUCs of 0.8905 and 0.8461, respectively, for DD in the training and testing groups of patients with ECC. The average AUCs of the LNM in the training and testing groups of patients with ECC were 0.9036 and 0.8889, respectively. For the 110 patients, this model has high predictive performance. The average accuracy values of the training group and testing group for DD of ECC were 82.6% and 80.9%, respectively; the average accuracy values of the training group and testing group for LNM of ECC were 83.6% and 81.2%, respectively.

CONCLUSIONS

The MRI-based PSO-SVM radiomics model might be useful for auxiliary clinical diagnosis and decision-making, which has a good potential for clinical application for DD and LNM of ECC.

摘要

背景

放射组学可提高传统影像诊断评估肝外胆管癌(ECC)的准确性;然而,这受到放射科医生之间的差异、主观评估以及有限数据的限制。基于放射组学的粒子群优化和支持向量机(PSO-SVM)模型可能为评估ECC的分化程度(DD)和淋巴结转移(LNM)提供更准确的辅助诊断。

目的

本研究的目的是建立一种用于预测ECC的DD和LNM的PSO-SVM放射组学模型。

方法

对于这项回顾性研究,使用2011年1月至2019年10月诊断的110例ECC患者的磁共振成像(MRI)数据构建放射组学预测模型。使用MaZda软件(版本4.6;罗兹工业大学电子研究所)从T1加权成像(T1WI)、T2加权成像(T2WI)和扩散加权成像(DWI)中提取放射组学特征。我们进行降维以分别获得每个序列的30个最佳特征。通过纳入放射组学特征和表观扩散系数(ADC)值,建立了PSO-SVM放射组学模型来预测ECC的DD和LNM。我们将110例病例随机分为训练组(88/110,80%)和测试组(22/110,20%)。通过分析受试者工作特征曲线(AUC)下的面积来评估模型的性能。

结果

利用110例ECC患者建立了基于PSO-SVM的放射组学模型。该模型在ECC患者训练组和测试组中对DD的平均AUC分别为0.8905和0.8461。ECC患者训练组和测试组中LNM的平均AUC分别为0.9036和0.8889。对于这110例患者,该模型具有较高的预测性能。ECC患者训练组和测试组中DD的平均准确率分别为82.6%和80.9%;ECC患者训练组和测试组中LNM的平均准确率分别为83.6%和81.2%。

结论

基于MRI的PSO-SVM放射组学模型可能有助于临床辅助诊断和决策,在ECC的DD和LNM临床应用方面具有良好潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20be/7573697/98a9600a3aa1/medinform_v8i10e23578_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验