Suppr超能文献

河马激酶 STK38 确保了 XPO1 的功能。

The hippo kinase STK38 ensures functionality of XPO1.

机构信息

Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School , Boston, USA.

Inserm U830, Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University , Paris, France.

出版信息

Cell Cycle. 2020 Nov;19(22):2982-2995. doi: 10.1080/15384101.2020.1826619. Epub 2020 Oct 5.

Abstract

The proper segregation of basic elements such as the compartmentalization of the genome and the shuttling of macromolecules between the nucleus and the cytoplasm is a crucial mechanism for homeostasis maintenance in eukaryotic cells. XPO1 (Exportin 1) is the major nuclear export receptor and is required for the export of proteins and RNAs out of the nucleus. STK38 (also known as NDR1) is a Hippo pathway serine/threonine kinase with multifarious functions in normal and cancer cells. In this review, we summarize the history of the discovery of the nucleo/cytoplasmic shuttling of proteins and focus on the major actor of nuclear export: XPO1. After describing the molecular events required for XPO1-mediated nuclear export of proteins, we introduce the Hippo pathway STK38 kinase, synthetize its regulation mechanisms as well as its biological functions in both normal and cancer cells, and finally its intersection with XPO1 biology. We discuss the recently identified mechanism of XPO1 activation by phosphorylation of XPO1_S1055 by STK38 and contextualize this finding according to the biological functions previously reported for both XPO1 and STK38, including the second identity of STK38 as an autophagy regulator. Finally, we phrase this newly identified activation mechanism into the general nuclear export machinery and examine the possible outcomes of nuclear export inhibition in cancer treatment.

摘要

正确分隔基本元素,如基因组的区室化和大分子在核和细胞质之间的穿梭,是真核细胞维持内稳态的关键机制。XPO1(Exportin 1)是主要的核输出受体,是蛋白质和 RNA 从核内输出所必需的。STK38(也称为 NDR1)是 Hippo 通路丝氨酸/苏氨酸激酶,在正常和癌细胞中有多种功能。在这篇综述中,我们总结了蛋白质核质穿梭发现的历史,重点介绍了核输出的主要因子:XPO1。在描述了 XPO1 介导的蛋白质核输出所需的分子事件之后,我们介绍了 Hippo 通路 STK38 激酶,综合了其调节机制及其在正常和癌细胞中的生物学功能,最后介绍了其与 XPO1 生物学的交叉点。我们讨论了最近发现的由 STK38 磷酸化 XPO1_S1055 激活 XPO1 的机制,并根据 XPO1 和 STK38 先前报道的生物学功能,包括 STK38 作为自噬调节剂的第二个身份,将这一发现置于背景中。最后,我们将这个新发现的激活机制纳入一般的核输出机制,并研究核输出抑制在癌症治疗中的可能结果。

相似文献

1
The hippo kinase STK38 ensures functionality of XPO1.
Cell Cycle. 2020 Nov;19(22):2982-2995. doi: 10.1080/15384101.2020.1826619. Epub 2020 Oct 5.
2
STK38 kinase acts as XPO1 gatekeeper regulating the nuclear export of autophagy proteins and other cargoes.
EMBO Rep. 2019 Nov 5;20(11):e48150. doi: 10.15252/embr.201948150. Epub 2019 Sep 23.
3
The STK38-XPO1 axis, a new actor in physiology and cancer.
Cell Mol Life Sci. 2021 Mar;78(5):1943-1955. doi: 10.1007/s00018-020-03690-w. Epub 2020 Nov 3.
4
XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer.
Nature. 2016 Oct 6;538(7623):114-117. doi: 10.1038/nature19771. Epub 2016 Sep 28.
5
Nucleo-cytoplasmic transport as a therapeutic target of cancer.
J Hematol Oncol. 2014 Dec 5;7:85. doi: 10.1186/s13045-014-0085-1.
6
Ribosomal Biogenesis and Translational Flux Inhibition by the Selective Inhibitor of Nuclear Export (SINE) XPO1 Antagonist KPT-185.
PLoS One. 2015 Sep 4;10(9):e0137210. doi: 10.1371/journal.pone.0137210. eCollection 2015.
7
Nuclear export of the yeast hexokinase 2 protein requires the Xpo1 (Crm1)-dependent pathway.
J Biol Chem. 2009 Jul 31;284(31):20548-55. doi: 10.1074/jbc.M109.013730. Epub 2009 Jun 12.
9
XPO1-dependent nuclear export as a target for cancer therapy.
J Hematol Oncol. 2020 Jun 1;13(1):61. doi: 10.1186/s13045-020-00903-4.
10
Targeting XPO1-Dependent Nuclear Export in Cancer.
Biochemistry (Mosc). 2022 Jan;87(Suppl 1):S178-S70. doi: 10.1134/S0006297922140140.

引用本文的文献

1
Caprin-1 influences autophagy-induced tumor growth and immune modulation in pancreatic cancer.
J Transl Med. 2023 Dec 11;21(1):903. doi: 10.1186/s12967-023-04693-4.

本文引用的文献

1
STK38 kinase acts as XPO1 gatekeeper regulating the nuclear export of autophagy proteins and other cargoes.
EMBO Rep. 2019 Nov 5;20(11):e48150. doi: 10.15252/embr.201948150. Epub 2019 Sep 23.
2
Nucleocytoplasmic transport: Mechanisms and involvement in neurodegenerative disease.
Neurology. 2019 Apr 16;92(16):757-764. doi: 10.1212/WNL.0000000000007305. Epub 2019 Mar 20.
4
Nuclear Pores Promote Lethal Prostate Cancer by Increasing POM121-Driven E2F1, MYC, and AR Nuclear Import.
Cell. 2018 Aug 23;174(5):1200-1215.e20. doi: 10.1016/j.cell.2018.07.015. Epub 2018 Aug 9.
5
RNA Nucleocytoplasmic Transport Defects in Neurodegenerative Diseases.
Adv Neurobiol. 2018;20:85-101. doi: 10.1007/978-3-319-89689-2_4.
6
The Rules and Functions of Nucleocytoplasmic Shuttling Proteins.
Int J Mol Sci. 2018 May 12;19(5):1445. doi: 10.3390/ijms19051445.
7
Regulation of the Hippo pathway in cancer biology.
Cell Mol Life Sci. 2018 Jul;75(13):2303-2319. doi: 10.1007/s00018-018-2804-1. Epub 2018 Mar 30.
8
9
Huntington's Disease: Nuclear Gatekeepers Under Attack.
Neuron. 2017 Apr 5;94(1):1-4. doi: 10.1016/j.neuron.2017.03.032.
10
The nuclear pore complex: understanding its function through structural insight.
Nat Rev Mol Cell Biol. 2017 Feb;18(2):73-89. doi: 10.1038/nrm.2016.147. Epub 2016 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验