Suppr超能文献

STK38-XPO1 轴,生理和癌症中的新角色。

The STK38-XPO1 axis, a new actor in physiology and cancer.

机构信息

Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, USA.

Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA.

出版信息

Cell Mol Life Sci. 2021 Mar;78(5):1943-1955. doi: 10.1007/s00018-020-03690-w. Epub 2020 Nov 3.

Abstract

The Hippo signal transduction pathway is an essential regulator of organ size during developmental growth by controlling multiple cellular processes such as cell proliferation, cell death, differentiation, and stemness. Dysfunctional Hippo signaling pathway leads to dramatic tissue overgrowth. Here, we will briefly introduce the Hippo tumor suppressor pathway before focusing on one of its members and the unexpected twists that followed our quest of its functions in its multifarious actions beside the Hippo pathway: the STK38 kinase. In this review, we will precisely discuss the newly identified role of STK38 on regulating the nuclear export machinery by phosphorylating and activating, the major nuclear export receptor XPO1. Finally, we will phrase STK38's role on regulating the subcellular distribution of crucial cellular regulators such as Beclin1 and YAP1 with its implication in cancer.

摘要

Hippo 信号转导通路通过控制细胞增殖、细胞死亡、分化和干细胞特性等多种细胞过程,是发育生长过程中器官大小的重要调节因子。Hippo 信号通路功能失调会导致组织过度生长。在这里,我们将简要介绍 Hippo 肿瘤抑制通路,然后重点介绍其成员之一,以及在 Hippo 通路之外,其在多种作用中功能的意想不到的转变:STK38 激酶。在这篇综述中,我们将详细讨论 STK38 通过磷酸化和激活主要核输出受体 XPO1 来调节核输出机制的新功能。最后,我们将描述 STK38 通过调节 Beclin1 和 YAP1 等关键细胞调节剂的亚细胞分布在癌症中的作用。

相似文献

1
The STK38-XPO1 axis, a new actor in physiology and cancer.
Cell Mol Life Sci. 2021 Mar;78(5):1943-1955. doi: 10.1007/s00018-020-03690-w. Epub 2020 Nov 3.
2
The hippo kinase STK38 ensures functionality of XPO1.
Cell Cycle. 2020 Nov;19(22):2982-2995. doi: 10.1080/15384101.2020.1826619. Epub 2020 Oct 5.
3
STK38 kinase acts as XPO1 gatekeeper regulating the nuclear export of autophagy proteins and other cargoes.
EMBO Rep. 2019 Nov 5;20(11):e48150. doi: 10.15252/embr.201948150. Epub 2019 Sep 23.
4
XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer.
Nature. 2016 Oct 6;538(7623):114-117. doi: 10.1038/nature19771. Epub 2016 Sep 28.
5
Exportin 1 governs the immunosuppressive functions of myeloid-derived suppressor cells in tumors through ERK1/2 nuclear export.
Cell Mol Immunol. 2024 Aug;21(8):873-891. doi: 10.1038/s41423-024-01187-1. Epub 2024 Jun 20.
6
Nucleo-cytoplasmic transport as a therapeutic target of cancer.
J Hematol Oncol. 2014 Dec 5;7:85. doi: 10.1186/s13045-014-0085-1.
7
Nuclear export of the yeast hexokinase 2 protein requires the Xpo1 (Crm1)-dependent pathway.
J Biol Chem. 2009 Jul 31;284(31):20548-55. doi: 10.1074/jbc.M109.013730. Epub 2009 Jun 12.
8
Hippo signaling regulates Yorkie nuclear localization and activity through 14-3-3 dependent and independent mechanisms.
Dev Biol. 2010 Jan 15;337(2):303-12. doi: 10.1016/j.ydbio.2009.10.046. Epub 2009 Nov 6.
9
Nuclear export receptor Xpo1/Crm1 is physically and functionally linked to the spindle pole body in budding yeast.
Mol Cell Biol. 2008 Sep;28(17):5348-58. doi: 10.1128/MCB.02043-07. Epub 2008 Jun 23.
10
Ribosomal Biogenesis and Translational Flux Inhibition by the Selective Inhibitor of Nuclear Export (SINE) XPO1 Antagonist KPT-185.
PLoS One. 2015 Sep 4;10(9):e0137210. doi: 10.1371/journal.pone.0137210. eCollection 2015.

引用本文的文献

3
Selinexor as a Therapeutic Target: Advances in Non-small Cell and Small Cell Lung Cancer Treatment Strategies.
Recent Pat Anticancer Drug Discov. 2025;20(2):274-284. doi: 10.2174/0115748928322627241016120142.
4
A review and perspective paper: Ras oncogene gets modest, from kingpin to mere henchman.
Cell Mol Life Sci. 2024 Oct 1;81(1):412. doi: 10.1007/s00018-024-05449-z.
5
Caprin-1 influences autophagy-induced tumor growth and immune modulation in pancreatic cancer.
J Transl Med. 2023 Dec 11;21(1):903. doi: 10.1186/s12967-023-04693-4.
7
Cytoplasmic YAP1-mediated ESCRT-III assembly promotes autophagic cell death and is ubiquitinated by NEDD4L in breast cancer.
Cancer Commun (Lond). 2023 May;43(5):582-612. doi: 10.1002/cac2.12417. Epub 2023 Apr 2.
8
A Genome-Wide Association Study into the Aetiology of Congenital Solitary Functioning Kidney.
Biomedicines. 2022 Nov 23;10(12):3023. doi: 10.3390/biomedicines10123023.
9
Prognostic and Immunological Role of across Cancers: Friend or Foe?
Int J Mol Sci. 2022 Sep 30;23(19):11590. doi: 10.3390/ijms231911590.
10
The "STK38-XPO1 axis": its general relevance and mechanistic underpinnings remain to be further characterized.
Cell Mol Life Sci. 2021 May;78(9):4451-4452. doi: 10.1007/s00018-021-03778-x. Epub 2021 Feb 9.

本文引用的文献

1
Ndr/Lats Kinases Bind Specific Mob-Family Coactivators through a Conserved and Modular Interface.
Biochemistry. 2020 May 5;59(17):1688-1700. doi: 10.1021/acs.biochem.9b01096. Epub 2020 Apr 17.
2
STK38 kinase acts as XPO1 gatekeeper regulating the nuclear export of autophagy proteins and other cargoes.
EMBO Rep. 2019 Nov 5;20(11):e48150. doi: 10.15252/embr.201948150. Epub 2019 Sep 23.
4
The Hippo Pathway: Biology and Pathophysiology.
Annu Rev Biochem. 2019 Jun 20;88:577-604. doi: 10.1146/annurev-biochem-013118-111829. Epub 2019 Dec 19.
6
Mechanoregulation and pathology of YAP/TAZ via Hippo and non-Hippo mechanisms.
Clin Transl Med. 2018 Aug 13;7(1):23. doi: 10.1186/s40169-018-0202-9.
8
Structural Basis for Auto-Inhibition of the NDR1 Kinase Domain by an Atypically Long Activation Segment.
Structure. 2018 Aug 7;26(8):1101-1115.e6. doi: 10.1016/j.str.2018.05.014. Epub 2018 Jul 5.
9
Regulation of the Hippo pathway in cancer biology.
Cell Mol Life Sci. 2018 Jul;75(13):2303-2319. doi: 10.1007/s00018-018-2804-1. Epub 2018 Mar 30.
10
The NDR/LATS protein kinases in immunology and cancer biology.
Semin Cancer Biol. 2018 Feb;48:104-114. doi: 10.1016/j.semcancer.2017.04.010. Epub 2017 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验