Suppr超能文献

使用3D卷积神经网络对丙泊酚麻醉期间无意识状态的广义预测

Generalized Prediction of Unconsciousness during Propofol Anesthesia using 3D Convolutional Neural Networks.

作者信息

Patlatzoglou Konstantinos, Chennu Srivas, Gosseries Olivia, Bonhomme Vincent, Wolff Audrey, Laureys Steven

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:134-137. doi: 10.1109/EMBC44109.2020.9175324.

Abstract

Neuroscience has generated a number of recent advances in the search for the neural correlates of consciousness, but these have yet to find valuable real-world applications. Electroencephalography under anesthesia provides a powerful experimental setup to identify electrophysiological signatures of altered states of consciousness, as well as a testbed for developing systems for automatic diagnosis and prognosis of awareness in clinical settings. In this work, we use deep convolutional neural networks to automatically differentiate sub-anesthetic states and depths of anesthesia, solely from one second of raw EEG signal. Our results with leave-one-participant-out-cross-validation show that behavioral measures, such as the Ramsay score, can be used to learn generalizable neural networks that reliably predict levels of unconsciousness in unseen transitional anesthetic states, as well as in unseen experimental setups and behaviors. Our findings highlight the potential of deep learning to detect progressive changes in anesthetic-induced unconsciousness with higher granularity than behavioral or pharmacological markers. This work has broader significance for identifying generalized patterns of brain activity that index states of consciousness.Clinical Relevance- In the United States alone, over 100,000 people receive general anesthesia every day, from which up to 1% is affected by unintended intraoperative awareness [1]. Despite this, brain-based monitoring of consciousness is not common in the clinic, and has had mixed success [2]. Given this context, our aim is to develop and explore an automated deep learning model that accurately predicts and interprets the depth and quality of anesthesia from the raw EEG signal.

摘要

神经科学在寻找意识的神经关联方面取得了一些最新进展,但这些进展尚未找到有价值的现实世界应用。麻醉状态下的脑电图提供了一个强大的实验装置,用于识别意识改变状态的电生理特征,同时也是开发临床环境中意识自动诊断和预后系统的试验台。在这项工作中,我们使用深度卷积神经网络仅从一秒钟的原始脑电图信号中自动区分亚麻醉状态和麻醉深度。我们的留一受试者交叉验证结果表明,诸如拉姆齐评分等行为指标可用于学习可推广的神经网络,该网络能够可靠地预测未见过的过渡性麻醉状态以及未见过的实验设置和行为中的无意识水平。我们的研究结果突出了深度学习在检测麻醉诱导的无意识状态的渐进变化方面的潜力,其粒度高于行为或药理学标记。这项工作对于识别指示意识状态的大脑活动的普遍模式具有更广泛的意义。临床相关性——仅在美国,每天就有超过10万人接受全身麻醉,其中高达1%的人会受到意外术中知晓的影响[1]。尽管如此,基于大脑的意识监测在临床上并不常见,且效果不一[2]。在此背景下,我们的目标是开发并探索一种自动化深度学习模型,该模型能够从原始脑电图信号中准确预测和解释麻醉的深度和质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验