Suppr超能文献

不同的脑电图特征可区分麻醉和睡眠期间的无意识和意识中断。

Distinct EEG signatures differentiate unconsciousness and disconnection during anaesthesia and sleep.

机构信息

Department of Anesthesiology, University of Wisconsin, Madison, WI, USA.

Department of Psychology, University of Wisconsin, Madison, WI, USA.

出版信息

Br J Anaesth. 2022 Jun;128(6):1006-1018. doi: 10.1016/j.bja.2022.01.010. Epub 2022 Feb 9.

Abstract

BACKGROUND

How conscious experience becomes disconnected from the environment, or disappears, across arousal states is unknown. We sought to identify the neural correlates of sensory disconnection and unconsciousness using a novel serial awakening paradigm.

METHODS

Volunteers were recruited for sedation with dexmedetomidine i.v., propofol i.v., or natural sleep with high-density EEG monitoring and serial awakenings to establish whether subjects were in states of disconnected consciousness or unconsciousness in the preceding 20 s. The primary outcome was classification of conscious states by occipital delta power (0.5-4 Hz). Secondary analyses included derivation (dexmedetomidine) and validation (sleep/propofol) studies of EEG signatures of conscious states.

RESULTS

Occipital delta power differentiated disconnected and unconscious states for dexmedetomidine (area under the curve [AUC] for receiver operating characteristic 0.605 [95% confidence interval {CI}: 0.516; 0.694]) but not for sleep/propofol (AUC 0.512 [95% CI: 0.380; 0.645]). Distinct source localised signatures of sensory disconnection (AUC 0.999 [95% CI: 0.9954; 1.0000]) and unconsciousness (AUC 0.972 [95% CI: 0.9507; 0.9879]) were identified using support vector machine classification of dexmedetomidine data. These findings generalised to sleep/propofol (validation data set: sensory disconnection [AUC 0.743 {95% CI: 0.6784; 0.8050}]) and unconsciousness (AUC 0.622 [95% CI: 0.5176; 0.7238]). We identified that sensory disconnection was associated with broad spatial and spectral changes. In contrast, unconsciousness was associated with focal decreases in activity in anterior and posterior cingulate cortices.

CONCLUSIONS

These findings may enable novel monitors of the anaesthetic state that can distinguish sensory disconnection and unconsciousness, and these may provide novel insights into the biology of arousal.

CLINICAL TRIAL REGISTRATION

NCT03284307.

摘要

背景

在觉醒状态下,意识体验如何与环境脱节或消失尚不清楚。我们试图使用一种新的连续唤醒范式来确定感觉分离和无意识的神经相关性。

方法

通过静脉注射右美托咪定、异丙酚或自然睡眠,招募志愿者进行镇静,同时进行高密度脑电图监测和连续唤醒,以确定受试者在前 20 秒内是否处于意识分离或无意识状态。主要结局是通过枕部δ功率(0.5-4 Hz)对意识状态进行分类。次要分析包括意识状态脑电图特征的推导(右美托咪定)和验证(睡眠/异丙酚)研究。

结果

枕部δ功率可区分右美托咪定的意识分离和无意识状态(受试者工作特征曲线下面积[AUC]为 0.605 [95%置信区间{CI}:0.516;0.694]),但不能区分睡眠/异丙酚(AUC 0.512 [95% CI:0.380;0.645])。使用右美托咪定数据的支持向量机分类,确定了感觉分离(AUC 0.999 [95% CI:0.9954;1.0000])和无意识(AUC 0.972 [95% CI:0.9507;0.9879])的独特源定位特征。这些发现可推广至睡眠/异丙酚(验证数据集:感觉分离[AUC 0.743 {95% CI:0.6784;0.8050}])和无意识(AUC 0.622 [95% CI:0.5176;0.7238])。我们发现感觉分离与广泛的空间和频谱变化有关。相比之下,无意识与前扣带和后扣带皮质的局部活动减少有关。

结论

这些发现可能为能够区分感觉分离和无意识的麻醉状态提供新型监测手段,为觉醒的生物学提供新的见解。

临床试验注册号

NCT03284307。

相似文献

1
Distinct EEG signatures differentiate unconsciousness and disconnection during anaesthesia and sleep.
Br J Anaesth. 2022 Jun;128(6):1006-1018. doi: 10.1016/j.bja.2022.01.010. Epub 2022 Feb 9.
2
Evaluation of putative signatures of consciousness using specific definitions of responsiveness, connectedness, and consciousness.
Br J Anaesth. 2024 Feb;132(2):300-311. doi: 10.1016/j.bja.2023.09.031. Epub 2023 Oct 31.
3
Evoked Alpha Power is Reduced in Disconnected Consciousness During Sleep and Anesthesia.
Sci Rep. 2018 Nov 9;8(1):16664. doi: 10.1038/s41598-018-34957-9.
4
Foundations of Human Consciousness: Imaging the Twilight Zone.
J Neurosci. 2021 Feb 24;41(8):1769-1778. doi: 10.1523/JNEUROSCI.0775-20.2020. Epub 2020 Dec 28.
5
Reorganization of rich-clubs in functional brain networks during propofol-induced unconsciousness and natural sleep.
Neuroimage Clin. 2020;25:102188. doi: 10.1016/j.nicl.2020.102188. Epub 2020 Jan 21.
6
Study protocol: Cerebral characterization of sensory gating in disconnected dreaming states during propofol anesthesia using fMRI.
Front Neurosci. 2024 Feb 13;18:1306344. doi: 10.3389/fnins.2024.1306344. eCollection 2024.
8
Network Properties in Transitions of Consciousness during Propofol-induced Sedation.
Sci Rep. 2017 Dec 1;7(1):16791. doi: 10.1038/s41598-017-15082-5.
10
Brain functional connectivity differentiates dexmedetomidine from propofol and natural sleep.
Br J Anaesth. 2017 Oct 1;119(4):674-684. doi: 10.1093/bja/aex257.

引用本文的文献

2
We are the Sensors of Consciousness! A Review and Analysis on How Awakenings During Sleep Influence Dream Recall.
Nat Sci Sleep. 2025 Apr 30;17:709-729. doi: 10.2147/NSS.S506461. eCollection 2025.
3
Comprehensive profiling of anaesthetised brain dynamics across phylogeny.
bioRxiv. 2025 Mar 24:2025.03.22.644729. doi: 10.1101/2025.03.22.644729.
5
A pilot human study using ketamine to treat disorders of consciousness.
iScience. 2024 Dec 19;28(1):111639. doi: 10.1016/j.isci.2024.111639. eCollection 2025 Jan 17.
6
Clinical and intracranial electrophysiological signatures of post-operative and post-ictal delirium.
Clin Neurophysiol. 2025 Mar;171:38-50. doi: 10.1016/j.clinph.2024.12.023. Epub 2025 Jan 20.
7
Noradrenergic suppression to reduce electroencephalographic arousal after intubation: a randomised, placebo-controlled trial.
BJA Open. 2024 Dec 16;13:100359. doi: 10.1016/j.bjao.2024.100359. eCollection 2025 Mar.
8
Effects of ketamine and propofol on muscarinic plateau potentials in rat neocortical pyramidal cells.
PLoS One. 2025 Jan 2;20(1):e0316262. doi: 10.1371/journal.pone.0316262. eCollection 2025.
9
Electroencephalogram monitoring during anesthesia and critical care: a guide for the clinician.
J Clin Monit Comput. 2025 Apr;39(2):315-348. doi: 10.1007/s10877-024-01250-2. Epub 2024 Dec 20.
10
The relationship of bispectral index values to conscious state: an analysis of two volunteer cohort studies.
Br J Anaesth. 2025 Mar;134(3):727-735. doi: 10.1016/j.bja.2024.09.032. Epub 2024 Dec 10.

本文引用的文献

1
Foundations of Human Consciousness: Imaging the Twilight Zone.
J Neurosci. 2021 Feb 24;41(8):1769-1778. doi: 10.1523/JNEUROSCI.0775-20.2020. Epub 2020 Dec 28.
2
Predictive coding as a model of sensory disconnection: relevance to anaesthetic mechanisms.
Br J Anaesth. 2021 Jan;126(1):37-40. doi: 10.1016/j.bja.2020.08.017. Epub 2020 Sep 8.
3
Cortical source localization of sleep-stage specific oscillatory activity.
Sci Rep. 2020 Apr 24;10(1):6976. doi: 10.1038/s41598-020-63933-5.
4
Temporal circuit of macroscale dynamic brain activity supports human consciousness.
Sci Adv. 2020 Mar 11;6(11):eaaz0087. doi: 10.1126/sciadv.aaz0087. eCollection 2020 Mar.
5
Conscious Processing and the Global Neuronal Workspace Hypothesis.
Neuron. 2020 Mar 4;105(5):776-798. doi: 10.1016/j.neuron.2020.01.026.
6
Automated anatomical labelling atlas 3.
Neuroimage. 2020 Feb 1;206:116189. doi: 10.1016/j.neuroimage.2019.116189. Epub 2019 Sep 12.
8
The neural correlates of dreaming.
Nat Neurosci. 2017 Jun;20(6):872-878. doi: 10.1038/nn.4545. Epub 2017 Apr 10.
10
Neural correlates of consciousness: progress and problems.
Nat Rev Neurosci. 2016 May;17(5):307-21. doi: 10.1038/nrn.2016.22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验