Suppr超能文献

MaDeNet: Disentangling Individuality of EEG Signals through Feature Space Mapping and Detachment.

作者信息

Moon Seong-Eun, Lee Jong-Seok

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:260-263. doi: 10.1109/EMBC44109.2020.9176301.

Abstract

The cross-subject variability, or individuality, of electroencephalography (EEG) signals often has been an obstacle to extracting target-related information from EEG signals for classification of subjects' perceptual states. In this paper, we propose a deep learning-based EEG classification approach, which learns feature space mapping and performs individuality detachment to reduce subject-related information from EEG signals and maximize classification performance. Our experiment on EEG-based video classification shows that our method significantly improves the classification accuracy.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验