Suppr超能文献

一种通过β散度映射人类脑振荡个体差异的流形学习方法。

A manifold learning approach to mapping individuality of human brain oscillations through beta-divergence.

作者信息

Suetani Hiromichi, Kitajo Keiichi

机构信息

Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan; RIKEN CBS-TOYOTA Collaboration Center (BTCC), RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.

RIKEN CBS-TOYOTA Collaboration Center (BTCC), RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.

出版信息

Neurosci Res. 2020 Jul;156:188-196. doi: 10.1016/j.neures.2020.02.004. Epub 2020 Feb 19.

Abstract

This paper proposes an approach for visualizing individuality and inter-individual variations of human brain oscillations measured as multichannel electroencephalographic (EEG) signals in a low-dimensional space based on manifold learning. Using a unified divergence measure between spectral densities termed the "beta-divergence", we introduce an appropriate dissimilarity measure between multichannel EEG signals. Then, t-distributed stochastic neighbor embedding (t-SNE; a state-of-the-art algorithm for manifold learning) together with the beta-divergence based distance was applied to resting state EEG signals recorded from 100 healthy subjects. We were able to obtain a fine low-dimensional visualization that enabled each subject to be identified as an isolated point cloud and that represented inter-individual variations as the relationships between such point clouds. Furthermore, we also discuss how the performance of the low-dimensional visualization depends on the beta-divergence parameter and the t-SNE hyper parameter. Finally, borrowing from the concept of locally linear embedding (LLE), we propose a method for projecting the test sample to the t-SNE space obtained from the training samples and investigate that availability.

摘要

本文提出了一种基于流形学习在低维空间中可视化以多通道脑电图(EEG)信号测量的人类脑振荡的个体性和个体间差异的方法。使用称为“β散度”的谱密度之间的统一散度度量,我们引入了多通道EEG信号之间适当的差异度量。然后,将t分布随机邻域嵌入(t-SNE;一种用于流形学习的先进算法)与基于β散度的距离一起应用于从100名健康受试者记录的静息态EEG信号。我们能够获得一个精细的低维可视化结果,使得每个受试者都能被识别为一个孤立的点云,并将个体间差异表示为这些点云之间的关系。此外,我们还讨论了低维可视化的性能如何依赖于β散度参数和t-SNE超参数。最后,借鉴局部线性嵌入(LLE)的概念,我们提出了一种将测试样本投影到从训练样本获得的t-SNE空间的方法,并研究了其可用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验