Suppr超能文献

使用深度神经网络对心律失常进行稳健分类

Robust Classification of Cardiac Arrhythmia Using a Deep Neural Network.

作者信息

Lennox Connor, Mahmud Md Shaad

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:288-291. doi: 10.1109/EMBC44109.2020.9175213.

Abstract

Machine learning has become increasingly useful in various medical applications. One such case is the automatic categorization of ECG voltage data. A method of categorization is proposed that works in real time to provide fast and accurate classifications of heart beats. This proposed method uses machine learning principles to allow for results to be determined based on a training dataset. The goal of this project is to develop a method of automatically classifying heartbeats that can be done on a low level and run on portable hardware.

摘要

机器学习在各种医学应用中变得越来越有用。其中一个例子是心电图电压数据的自动分类。提出了一种实时工作的分类方法,以提供快速准确的心跳分类。该方法利用机器学习原理,根据训练数据集确定结果。该项目的目标是开发一种可以在底层完成并在便携式硬件上运行的心跳自动分类方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验