Suppr超能文献

使用谱聚类在黎曼流形上检测用于脑机接口的脑电图异常值。

Detecting EEG outliers for BCI on the Riemannian manifold using spectral clustering.

作者信息

Yamamoto Maria Sayu, Sadatnejad Khadijeh, Tanaka Toshihisa, Islam Rabiul, Tanaka Yuichi, Lotte Fabien

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:438-441. doi: 10.1109/EMBC44109.2020.9175456.

Abstract

Automatically detecting and removing Electroencephalogram (EEG) outliers is essential to design robust brain-computer interfaces (BCIs). In this paper, we propose a novel outlier detection method that works on the Riemannian manifold of sample covariance matrices (SCMs). Existing outlier detection methods run the risk of erroneously rejecting some samples as outliers, even if there is no outlier, due to the detection being based on a reference matrix and a threshold. To address this limitation, our method, Riemannian Spectral Clustering (RiSC), detects outliers by clustering SCMs into non-outliers and outliers, based on a proposed similarity measure. This considers the Riemannian geometry of the space and magnifies the similarity within the non-outlier cluster and weakens it between non-outlier and outlier clusters, instead of setting a threshold. To assess RiSC performance, we generated artificial EEG datasets contaminated by different outlier strengths and numbers. Comparing Hit-False (HF) difference between RiSC and existing outlier detection methods confirmed that RiSC could detect outliers significantly better (p < 0.001). In particular, RiSC improved HF difference the most for datasets with the most severe outlier contamination.

摘要

自动检测和去除脑电图(EEG)异常值对于设计稳健的脑机接口(BCI)至关重要。在本文中,我们提出了一种新颖的异常值检测方法,该方法在样本协方差矩阵(SCM)的黎曼流形上运行。现有的异常值检测方法存在错误地将一些样本误判为异常值的风险,即使没有异常值,这是因为检测基于参考矩阵和阈值。为了解决这一局限性,我们的方法——黎曼谱聚类(RiSC),基于一种提出的相似性度量,通过将SCM聚类为非异常值和异常值来检测异常值。这考虑了空间的黎曼几何,放大了非异常值聚类内的相似性,并削弱了非异常值聚类与异常值聚类之间的相似性,而不是设置阈值。为了评估RiSC的性能,我们生成了受不同异常值强度和数量污染的人工EEG数据集。比较RiSC与现有异常值检测方法之间的命中-错误(HF)差异证实,RiSC能够显著更好地检测异常值(p < 0.001)。特别是,对于异常值污染最严重的数据集,RiSC改善HF差异的程度最大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验