Suppr超能文献

基于边际希尔伯特谱特征和卷积神经网络的自动睡眠阶段分类

Automatic Sleep Stage Classification using Marginal Hilbert Spectrum Features and a Convolutional Neural Network.

作者信息

Wang Wenshuai, Liao Pan, Sun Yi, Su Guiping, Ye Shiwei, Liu Yan

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:625-628. doi: 10.1109/EMBC44109.2020.9175460.

Abstract

In this paper, we propose a novel method of automatic sleep stage classification based on single-channel electroencephalography (EEG). First, we use marginal Hilbert spectrum (MHS) to depict time-frequency domain features of five sleep stages of 30-second (30s) EEG epochs. Second, the extracted MHSs features are input to a convolutional neural network (CNN) as multi-channel sequences for the sleep stage classification task. Third, a focal loss function is introduced into the CNN classifier to alleviate the classes imbalance problem of sleep data. Experimental results show that the proposed method can obtain an overall accuracy of 86.14% on the public Sleep-EDF dataset, which is competitive and worth exploring among a series of deep learning methods for the automatic sleep stage classification task.

摘要

在本文中,我们提出了一种基于单通道脑电图(EEG)的自动睡眠阶段分类新方法。首先,我们使用边际希尔伯特谱(MHS)来描绘30秒脑电图时段五个睡眠阶段的时频域特征。其次,将提取的MHS特征作为多通道序列输入到卷积神经网络(CNN)中,用于睡眠阶段分类任务。第三,在CNN分类器中引入焦点损失函数,以缓解睡眠数据的类别不平衡问题。实验结果表明,该方法在公开的Sleep-EDF数据集上可获得86.14%的总体准确率,在一系列用于自动睡眠阶段分类任务的深度学习方法中具有竞争力且值得探索。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验