Suppr超能文献

基于 DoubleLinkSleepCLNet 的脑电信号睡眠阶段分类研究。

Study on the classification of sleep stages in EEG signals based on DoubleLinkSleepCLNet.

机构信息

College of Computer Science and Technology, Taiyuan Normal University, No. 319 Daxue Street, Jinzhong, 030619, Shanxi, China.

Psychiatry Research Center, Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, 100096, China.

出版信息

Sleep Breath. 2024 Oct;28(5):2055-2061. doi: 10.1007/s11325-024-03112-2. Epub 2024 Jul 24.

Abstract

PURPOSE

The classification of sleep stages based on Electroencephalogram (EEG) changes has significant implications for evaluating sleep quality and sleep status. Most polysomnography (PSG) systems have a limited number of channels and do not achieve optimal classification performance due to a paucity of raw data. To leverage the data characteristics and enhance the classification accuracy, we propose and evaluate a novel dual-link deep neural network model, 'DoubleLinkSleepCLNet'.

METHODS

The DoubleLinkSleepCLNet model performs feature extraction and efficient classification on both the raw EEG and the EEG processed with the Hilbert transform. It leverages the frequency domain and time domain feature modules, resulting in superior performance compared to other models.

RESULTS

The DoubleLinkSleepCLNet model, using the 2 Raw/2 Hilbert data modes, achieved the highest classification performance with an accuracy of 88.47%. The average accuracy of the EEG was improved by approximately 4.08% after the application of the Hilbert transform. Additionally, Convolutional Neural Network (CNN) demonstrated superior performance in processing phase information, whereas Long Short-Term Memory (LSTM) excelled in handling time series data.

CONCLUSION

The application of the Hilbert transform to EEG data, followed by processing it with a convolutional neural network, enhances the accuracy of the model. These findings introduce novel concepts for accelerating sleep stage prediction research, suggesting potential applications of these methods to other EEG analyses.

摘要

目的

基于脑电图(EEG)变化的睡眠阶段分类对评估睡眠质量和睡眠状态具有重要意义。大多数多导睡眠图(PSG)系统通道数量有限,由于原始数据不足,无法达到最佳的分类性能。为了利用数据特征并提高分类准确性,我们提出并评估了一种新颖的双链路深度神经网络模型,“DoubleLinkSleepCLNet”。

方法

DoubleLinkSleepCLNet 模型对原始 EEG 和经过希尔伯特变换处理的 EEG 进行特征提取和高效分类。它利用了频域和时域特征模块,与其他模型相比具有卓越的性能。

结果

DoubleLinkSleepCLNet 模型采用 2 个原始/2 个希尔伯特数据模式,在分类性能方面达到了最高的准确性,准确率为 88.47%。应用希尔伯特变换后,EEG 的平均准确性提高了约 4.08%。此外,卷积神经网络(CNN)在处理相位信息方面表现出色,而长短期记忆(LSTM)在处理时间序列数据方面表现优异。

结论

将希尔伯特变换应用于 EEG 数据,然后使用卷积神经网络对其进行处理,可提高模型的准确性。这些发现为加速睡眠阶段预测研究引入了新的概念,表明这些方法在其他 EEG 分析中的潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验