Suppr超能文献

研究利用附加呼吸音进行呼吸系统疾病诊断的分割方法。

Investigating into segmentation methods for diagnosis of respiratory diseases using adventitious respiratory sounds.

作者信息

Wu Liqun, Li Ling

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:768-771. doi: 10.1109/EMBC44109.2020.9175783.

Abstract

Respiratory condition has received a great amount of attention nowadays since respiratory diseases recently become the globally leading causes of death. Traditionally, stethoscope is applied in early diagnosis but it requires clinician with extensive training experience to provide accurate diagnosis. Accordingly, a subjective and fast diagnosing solution of respiratory diseases is highly demanded. Adventitious respiratory sounds (ARSs), such as crackle, are mainly concerned during diagnosis since they are indication of various respiratory diseases. Therefore, the characteristics of crackle are informative and valuable regarding to develop a computerised approach for pathology-based diagnosis. In this work, we propose a framework combining random forest classifier and Empirical Mode Decomposition (EMD) method focusing on a multi-classification task of identifying subjects in 6 respiratory conditions (healthy, bronchiectasis, bronchiolitis, COPD, pneumonia and URTI). Specifically, 14 combinations of respiratory sound segments were compared and we found segmentation plays an important role in classifying different respiratory conditions. The classifier with best performance (accuracy = 0.88, precision = 0.91, recall = 0.87, specificity = 0.91, F1-score = 0.81) was trained with features extracted from the combination of early inspiratory phase and entire inspiratory phase. To our best knowledge, we are the first to address the challenging multi-classification problem.

摘要

由于呼吸系统疾病最近成为全球主要的死亡原因,呼吸系统疾病目前受到了极大的关注。传统上,听诊器用于早期诊断,但这需要临床医生具备丰富的培训经验才能提供准确的诊断。因此,迫切需要一种主观且快速的呼吸系统疾病诊断解决方案。在诊断过程中,诸如啰音之类的附加呼吸音(ARSs)是主要关注点,因为它们是各种呼吸系统疾病的指征。因此,啰音的特征对于开发基于病理学的计算机化诊断方法具有重要的参考价值。在这项工作中,我们提出了一种结合随机森林分类器和经验模态分解(EMD)方法的框架,重点关注识别6种呼吸系统疾病(健康、支气管扩张、细支气管炎、慢性阻塞性肺疾病、肺炎和上呼吸道感染)患者的多分类任务。具体而言,我们比较了14种呼吸音段组合,发现分段在区分不同的呼吸系统疾病中起着重要作用。使用从早期吸气阶段和整个吸气阶段的组合中提取的特征训练出了性能最佳的分类器(准确率 = 0.88,精确率 = 0.91,召回率 = 0.87,特异性 = 0.91,F1分数 = 0.81)。据我们所知,我们是首个解决这一具有挑战性的多分类问题的团队。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验