Suppr超能文献

肠道细菌乙酰羟酸合酶同工酶特异性的生理学意义。

Physiological implications of the specificity of acetohydroxy acid synthase isozymes of enteric bacteria.

作者信息

Barak Z, Chipman D M, Gollop N

出版信息

J Bacteriol. 1987 Aug;169(8):3750-6. doi: 10.1128/jb.169.8.3750-3756.1987.

Abstract

The rates of formation of the two alternative products of acetohydroxy acid synthase (AHAS) have been determined by a new analytical method (N. Gollop, Z. Barak, and D. M. Chipman, Anal. Biochem., 160:323-331, 1987). For each of the three distinct isozymes of AHAS in Escherichia coli and Salmonella typhimurium, a specificity ratio, R, was defined: Formula: see text, which is constant over a wide range of substrate concentrations. This is consistent with competition between pyruvate and 2-ketobutyrate for an active acetaldehyde intermediate formed irreversibly after addition of the first pyruvate moiety to the enzyme. Isozyme I showed no product preference (R = 1), whereas isozymes II and III form acetohydroxybutyrate (AHB) at approximately 180- and 60-fold faster rates, respectively, than acetolactate (AL) at equal pyruvate and 2-ketobutyrate concentrations. R values higher than 60 represent remarkably high specificity in favor of the substrate with one extra methylene group. In exponentially growing E. coli cells (under aerobic growth on glucose), which contain about 300 microM pyruvate and only 3 microM 2-ketobutyrate, AHAS I would produce almost entirely AL and only 1 to 2% AHB. However, isozymes II and III would synthesize AHB (on the pathway to Ile) and AL (on the pathway to valine-leucine) in essentially the ratio required for protein synthesis. The specificity ratio R of any AHAS isozyme was affected neither by the natural feedback inhibitors (Val, Ile) nor by the pH. On the basis of the specificities of the isozymes, the known regulation of AHAS I expression by the catabolite repression system, and the reported behavior of bacterial mutants containing single AHAS isozymes, we suggest that AHAS I enables a bacterium to cope with poor carbon sources, which lead to low endogenous pyruvate concentrations. Although AHAS II and III are well suited to producing the branched-chain amino acid precursors during growth on glucose, they would fail to provide appropriate quantities of AL when the concentration of pyruvate is relatively low.

摘要

通过一种新的分析方法(N. 戈洛普、Z. 巴拉克和D. M. 奇普曼,《分析生物化学》,160:323 - 331,1987)测定了乙酰羟酸合酶(AHAS)两种替代产物的生成速率。对于大肠杆菌和鼠伤寒沙门氏菌中AHAS的三种不同同工酶,定义了一个特异性比率R:公式:见文本,该比率在很宽的底物浓度范围内保持恒定。这与丙酮酸和2 - 酮丁酸竞争在第一个丙酮酸部分添加到酶上后不可逆形成的活性乙醛中间体相一致。同工酶I没有产物偏好(R = 1),而在丙酮酸和2 - 酮丁酸浓度相等时,同工酶II和III形成乙酰羟丁酸(AHB)的速率分别比乙酰乳酸(AL)快约180倍和60倍。高于60的R值代表对具有一个额外亚甲基的底物具有非常高的特异性。在指数生长的大肠杆菌细胞中(在以葡萄糖为有氧生长底物时),细胞内含有约300微摩尔丙酮酸和仅3微摩尔2 - 酮丁酸,AHAS I几乎完全产生AL,仅产生1%至2%的AHB。然而,同工酶II和III将以蛋白质合成所需的基本比例合成AHB(在通向异亮氨酸的途径上)和AL(在通向缬氨酸 - 亮氨酸的途径上)。任何AHAS同工酶的特异性比率R既不受天然反馈抑制剂(缬氨酸、异亮氨酸)影响,也不受pH影响。基于同工酶的特异性、已知的分解代谢物阻遏系统对AHAS I表达的调控以及报道的含有单一AHAS同工酶的细菌突变体的行为,我们认为AHAS I使细菌能够应对导致内源性丙酮酸浓度较低的劣质碳源。虽然AHAS II和III非常适合在以葡萄糖生长期间产生支链氨基酸前体,但当丙酮酸浓度相对较低时,它们无法提供适量的AL。

相似文献

1
Physiological implications of the specificity of acetohydroxy acid synthase isozymes of enteric bacteria.
J Bacteriol. 1987 Aug;169(8):3750-6. doi: 10.1128/jb.169.8.3750-3756.1987.
2
Kinetics and mechanism of acetohydroxy acid synthase isozyme III from Escherichia coli.
Biochemistry. 1989 Jul 25;28(15):6310-7. doi: 10.1021/bi00441a024.
3
Physiological implications of the substrate specificities of acetohydroxy acid synthases from varied organisms.
J Bacteriol. 1990 Jun;172(6):3444-9. doi: 10.1128/jb.172.6.3444-3449.1990.
9

引用本文的文献

1
An easy and sensitive assay for acetohydroxyacid synthases based on the simultaneous detection of substrates and products in a single step.
Anal Bioanal Chem. 2024 Dec;416(29):7085-7098. doi: 10.1007/s00216-024-05613-1. Epub 2024 Oct 23.
2
Resurrecting essential amino acid biosynthesis in mammalian cells.
Elife. 2022 Sep 27;11:e72847. doi: 10.7554/eLife.72847.
4
Metabolic Detoxification of 2-Oxobutyrate by Remodeling Acetate Bypass.
Metabolites. 2021 Jan 4;11(1):30. doi: 10.3390/metabo11010030.
6
Crystallographic Structures of IlvN·Val/Ile Complexes: Conformational Selectivity for Feedback Inhibition of Aceto Hydroxy Acid Synthases.
Biochemistry. 2019 Apr 16;58(15):1992-2008. doi: 10.1021/acs.biochem.9b00050. Epub 2019 Mar 29.
7
Fermentative production of the unnatural amino acid L-2-aminobutyric acid based on metabolic engineering.
Microb Cell Fact. 2019 Feb 28;18(1):43. doi: 10.1186/s12934-019-1095-z.
8
Analyses of variants of the Ser/Thr dehydratase IlvA provide insight into 2-aminoacrylate metabolism in .
J Biol Chem. 2018 Dec 14;293(50):19240-19249. doi: 10.1074/jbc.RA118.005626. Epub 2018 Oct 16.
9
Shifts in the Gut Metabolome and Transcriptome throughout Colonization and Infection in a Mouse Model.
mSphere. 2018 Mar 28;3(2). doi: 10.1128/mSphere.00089-18. eCollection 2018 Mar-Apr.
10
Characterization of acetohydroxyacid synthase from the hyperthermophilic bacterium .
Biochem Biophys Rep. 2015 Aug 28;4:89-97. doi: 10.1016/j.bbrep.2015.08.014. eCollection 2015 Dec.

本文引用的文献

4
Quantitative measurements of membrane potential in Escherichia coli.
Biochemistry. 1980 Jul 22;19(15):3585-90. doi: 10.1021/bi00556a026.
6
Purification and subunit composition of acetohydroxyacid synthase I from Escherichia coli K-12.
J Bacteriol. 1984 Jan;157(1):184-9. doi: 10.1128/jb.157.1.184-189.1984.
7
Inhibition of acetohydroxy acid synthase by leucine.
Biochim Biophys Acta. 1983 Oct 17;748(1):34-9. doi: 10.1016/0167-4838(83)90024-9.
8
2-Ketobutyrate: a putative alarmone of Escherichia coli.
Mol Gen Genet. 1983;190(3):452-8. doi: 10.1007/BF00331076.
9
pH homeostasis in bacteria.
Biochim Biophys Acta. 1981 Dec;650(2-3):151-66. doi: 10.1016/0304-4157(81)90004-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验