Suppr超能文献

通过重塑乙酸旁路对2-氧代丁酸进行代谢解毒

Metabolic Detoxification of 2-Oxobutyrate by Remodeling Acetate Bypass.

作者信息

Fang Yu, Zhang Shuyan, Wang Jianli, Yin Lianghong, Zhang Hailing, Wang Zhen, Song Jie, Hu Xiaoqing, Wang Xiaoyuan

机构信息

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.

Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China.

出版信息

Metabolites. 2021 Jan 4;11(1):30. doi: 10.3390/metabo11010030.

Abstract

2-Oxobutyrate (2-OBA), as a toxic metabolic intermediate, generally arrests the cell growth of most microorganisms and blocks the biosynthesis of target metabolites. In this study, we demonstrated that using the acetate bypass to replace the pyruvate dehydrogenase complex (PDHc) in could recharge the intracellular acetyl-CoA pool to alleviate the metabolic toxicity of 2-OBA. Furthermore, based on the crystal structure of pyruvate oxidase (PoxB), two candidate residues in the substrate-binding pocket of PoxB were predicted by computational simulation. Site-directed saturation mutagenesis was performed to attenuate 2-OBA-binding affinity, and one of the variants, PoxB, exhibited a 20-fold activity ratio of pyruvate/2-OBA in substrate selectivity. PoxB was employed to remodel the acetate bypass in , resulting in l-threonine (a precursor of 2-OBA) biosynthesis with minimal inhibition from 2-OBA. After metabolic detoxification of 2-OBA, the supplies of intracellular acetyl-CoA and NADPH (nicotinamide adenine dinucleotide phosphate) used for l-threonine biosynthesis were restored. Therefore, 2-OBA is the substitute for pyruvate to engage in enzymatic reactions and disturbs pyruvate metabolism. Our study makes a straightforward explanation of the 2-OBA toxicity mechanism and gives an effective approach for its metabolic detoxification.

摘要

2-氧代丁酸(2-OBA)作为一种有毒的代谢中间体,通常会抑制大多数微生物的细胞生长,并阻断目标代谢物的生物合成。在本研究中,我们证明,在[具体内容缺失]中利用乙酸旁路替代丙酮酸脱氢酶复合物(PDHc)可以补充细胞内乙酰辅酶A库,以减轻2-OBA的代谢毒性。此外,基于丙酮酸氧化酶(PoxB)的晶体结构,通过计算模拟预测了PoxB底物结合口袋中的两个候选残基。进行定点饱和诱变以减弱2-OBA结合亲和力,其中一个变体PoxB在底物选择性方面表现出丙酮酸/2-OBA 20倍的活性比。利用PoxB对[具体内容缺失]中的乙酸旁路进行重塑,从而在2-OBA抑制作用最小的情况下合成L-苏氨酸(2-OBA的前体)。在对2-OBA进行代谢解毒后,用于L-苏氨酸生物合成的细胞内乙酰辅酶A和烟酰胺腺嘌呤二核苷酸磷酸(NADPH)供应得以恢复。因此,2-OBA替代丙酮酸参与酶促反应并扰乱丙酮酸代谢。我们的研究对2-OBA毒性机制做出了直接解释,并为其代谢解毒提供了有效方法。

相似文献

1
Metabolic Detoxification of 2-Oxobutyrate by Remodeling Acetate Bypass.
Metabolites. 2021 Jan 4;11(1):30. doi: 10.3390/metabo11010030.
2
Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli.
Microbiology (Reading). 2001 Jun;147(Pt 6):1483-1498. doi: 10.1099/00221287-147-6-1483.
4
Synthetic metabolic bypass for a metabolic toggle switch enhances acetyl-CoA supply for isopropanol production by Escherichia coli.
J Biosci Bioeng. 2017 May;123(5):625-633. doi: 10.1016/j.jbiosc.2016.12.009. Epub 2017 Feb 14.
10

引用本文的文献

1
The effect of long-term exposure to diatrizoate on microbial communities in activated sludge.
Sci Rep. 2025 May 20;15(1):17441. doi: 10.1038/s41598-025-02321-3.
2
Model-Guided Rational Construction of Escherichia coli Synthetic Consortia for Enhanced 2-Methylbutyric Acid Production.
Adv Sci (Weinh). 2025 Jun;12(22):e2416272. doi: 10.1002/advs.202416272. Epub 2025 May 5.
3
Exploring L-isoleucine riboswitches for enhancing 4-hydroxyisoleucine production in Corynebacterium glutamicum.
Biotechnol Lett. 2023 Sep;45(9):1169-1181. doi: 10.1007/s10529-023-03407-6. Epub 2023 Jul 3.
5
RNA-Seq-based transcriptome analysis of methicillin-resistant growth inhibition by propionate.
Front Microbiol. 2022 Dec 22;13:1063650. doi: 10.3389/fmicb.2022.1063650. eCollection 2022.
6
Metabolomics-Driven Identification of the Rate-Limiting Steps in 1-Propanol Production.
Front Microbiol. 2022 Apr 14;13:871624. doi: 10.3389/fmicb.2022.871624. eCollection 2022.

本文引用的文献

2
Rebalancing microbial carbon distribution for L-threonine maximization using a thermal switch system.
Metab Eng. 2020 Sep;61:33-46. doi: 10.1016/j.ymben.2020.01.009. Epub 2020 May 1.
3
Structure-guided reshaping of the acyl binding pocket of 'TesA thioesterase enhances octanoic acid production in E. coli.
Metab Eng. 2020 Sep;61:24-32. doi: 10.1016/j.ymben.2020.04.010. Epub 2020 Apr 24.
4
Truncating the Structure of Lipopolysaccharide in Can Effectively Improve Poly-3-hydroxybutyrate Production.
ACS Synth Biol. 2020 May 15;9(5):1201-1215. doi: 10.1021/acssynbio.0c00071. Epub 2020 Apr 30.
5
Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply.
Biotechnol Bioeng. 2020 Jul;117(7):2153-2164. doi: 10.1002/bit.27350. Epub 2020 Apr 17.
7
Increasing L-threonine production in Escherichia coli by overexpressing the gene cluster phaCAB.
J Ind Microbiol Biotechnol. 2019 Nov;46(11):1557-1568. doi: 10.1007/s10295-019-02215-0. Epub 2019 Jul 16.
8
Metabolic engineering of Yarrowia lipolytica for the biosynthesis of crotonic acid.
Bioresour Technol. 2019 Sep;287:121484. doi: 10.1016/j.biortech.2019.121484. Epub 2019 May 16.
9
Biological Conversion of Amino Acids to Higher Alcohols.
Trends Biotechnol. 2019 Aug;37(8):855-869. doi: 10.1016/j.tibtech.2019.01.011. Epub 2019 Mar 11.
10
Fermentative production of the unnatural amino acid L-2-aminobutyric acid based on metabolic engineering.
Microb Cell Fact. 2019 Feb 28;18(1):43. doi: 10.1186/s12934-019-1095-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验