Ko Hoon, Chung Heewon, Lee Hooseok, Lee Jinseok
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1290-1293. doi: 10.1109/EMBC44109.2020.9176162.
Intracranial hemorrhage (ICH) is a life-threatening condition, the outcome of which is associated with stroke, trauma, aneurysm, vascular malformations, high blood pressure, illicit drugs and blood clotting disorders. In this study, we presented the feasibility of the automatic identification and classification of ICH using a head CT image based on deep learning technique. The subtypes of ICH for the classification was intraparenchymal, intraventricular, subarachnoid, subdural and epidural. We first performed windowing to provide three different images: brain window, bone window and subdural window, and trained 4,516,842 head CT images using CNN-LSTM model. We used the Xception model for the deep CNN, and 64 nodes and 32 timesteps for LSTM. For the performance evaluation, we tested 727,392 head CT images, and found the resultant weighted multi-label logarithmic loss was 0.07528. We believe that our proposed method enhances the accuracy of ICH identification and classification and can assist radiologists in the interpretation of head CT images, particularly for brain-related quantitative analysis.
颅内出血(ICH)是一种危及生命的疾病,其结果与中风、创伤、动脉瘤、血管畸形、高血压、非法药物和凝血障碍有关。在本研究中,我们展示了基于深度学习技术利用头部CT图像自动识别和分类ICH的可行性。用于分类的ICH亚型为脑实质内、脑室内、蛛网膜下腔、硬膜下和硬膜外。我们首先进行开窗操作以提供三种不同的图像:脑窗、骨窗和硬膜下窗,并使用CNN-LSTM模型训练了4516842张头部CT图像。我们将Xception模型用于深度卷积神经网络(CNN),并将64个节点和32个时间步用于长短期记忆网络(LSTM)。为了进行性能评估,我们测试了727392张头部CT图像,发现最终的加权多标签对数损失为0.07528。我们相信我们提出的方法提高了ICH识别和分类的准确性,并且可以协助放射科医生解读头部CT图像,特别是对于与脑相关的定量分析。