Suppr超能文献

一种新型深度学习算法在 CT 扫描中检测颅内出血的准确性和时间效率。

Accuracy and time efficiency of a novel deep learning algorithm for Intracranial Hemorrhage detection in CT Scans.

机构信息

Diagnostic and Interventional Radiology Unit, BIOMORF Department, University of Messina, Messina, Italy.

Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD, Rotterdam, The Netherlands.

出版信息

Radiol Med. 2024 Oct;129(10):1499-1506. doi: 10.1007/s11547-024-01867-y. Epub 2024 Aug 9.

Abstract

PURPOSE

To evaluate a deep learning-based pipeline using a Dense-UNet architecture for the assessment of acute intracranial hemorrhage (ICH) on non-contrast computed tomography (NCCT) head scans after traumatic brain injury (TBI).

MATERIALS AND METHODS

This retrospective study was conducted using a prototype algorithm that evaluated 502 NCCT head scans with ICH in context of TBI. Four board-certified radiologists evaluated in consensus the CT scans to establish the standard of reference for hemorrhage presence and type of ICH. Consequently, all CT scans were independently analyzed by the algorithm and a board-certified radiologist to assess the presence and type of ICH. Additionally, the time to diagnosis was measured for both methods.

RESULTS

A total of 405/502 patients presented ICH classified in the following types: intraparenchymal (n = 172); intraventricular (n = 26); subarachnoid (n = 163); subdural (n = 178); and epidural (n = 15). The algorithm showed high diagnostic accuracy (91.24%) for the assessment of ICH with a sensitivity of 90.37% and specificity of 94.85%. To distinguish the different ICH types, the algorithm had a sensitivity of 93.47% and a specificity of 99.79%, with an accuracy of 98.54%. To detect midline shift, the algorithm had a sensitivity of 100%. In terms of processing time, the algorithm was significantly faster compared to the radiologist's time to first diagnosis (15.37 ± 1.85 vs 277 ± 14 s, p < 0.001).

CONCLUSION

A novel deep learning algorithm can provide high diagnostic accuracy for the identification and classification of ICH from unenhanced CT scans, combined with short processing times. This has the potential to assist and improve radiologists' ICH assessment in NCCT scans, especially in emergency scenarios, when time efficiency is needed.

摘要

目的

评估一种基于深度学习的密集型 UNet 架构的管道,用于评估创伤性脑损伤 (TBI) 后非对比 CT (NCCT) 头部扫描的急性颅内出血 (ICH)。

材料和方法

本回顾性研究使用原型算法进行,该算法评估了 502 例 TBI 背景下的 NCCT 头部扫描中的 ICH。四名具有董事会认证的放射科医生一致评估 CT 扫描,以建立出血存在和 ICH 类型的参考标准。因此,算法和一名具有董事会认证的放射科医生独立分析了所有 CT 扫描,以评估 ICH 的存在和类型。此外,还测量了两种方法的诊断时间。

结果

共有 405/502 名患者出现 ICH,分为以下类型:脑实质内 (n=172);脑室内 (n=26);蛛网膜下腔 (n=163);硬膜下 (n=178);和硬膜外 (n=15)。该算法对 ICH 的评估具有很高的诊断准确性 (91.24%),其敏感性为 90.37%,特异性为 94.85%。为了区分不同的 ICH 类型,该算法的敏感性为 93.47%,特异性为 99.79%,准确性为 98.54%。为了检测中线移位,该算法的敏感性为 100%。在处理时间方面,与放射科医生的首次诊断时间相比,该算法的速度明显更快 (15.37±1.85 与 277±14 s,p<0.001)。

结论

一种新的深度学习算法可以为非增强 CT 扫描中的 ICH 识别和分类提供高诊断准确性,同时处理时间短。这有可能帮助和改善放射科医生在 NCCT 扫描中的 ICH 评估,特别是在需要时间效率的紧急情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bc6/11480174/ec3c561ef64f/11547_2024_1867_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验