Suppr超能文献

胃起搏细胞的监督式机器学习分割与量化

Supervised Machine Learning Segmentation and Quantification of Gastric Pacemaker Cells.

作者信息

Mah Sue Ann, Avci Recep, Du Peng, Vanderwinden Jean-Marie, Cheng Leo K

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1408-1411. doi: 10.1109/EMBC44109.2020.9176445.

Abstract

Interstitial Cells of Cajal (ICC) are specialized pacemaker cells that generate and actively propagate electrophysiological events called slow waves. Slow waves regulate the motility of the gastrointestinal tract necessary for digesting food. Degradation in the ICC network structure has been qualitatively associated to several gastrointestinal motility disorders. ICC network structure can be obtained using confocal microscopy, but the current limitations in imaging and segmentation techniques have hindered an accurate representation of the networks. In this study, supervised machine learning techniques were applied to extract the ICC networks from 3D confocal microscopy images. The results showed that the Fast Random Forest classification method using Trainable WEKA Segmentation outperformed the Decision Table and Naïve Bayes classification methods in sensitivity, accuracy, and F-measure. Using the Fast Random Forest classifier, 12 gastric antrum tissue blocks were segmented and variations in ICC network thickness, density and process width were quantified for the myenteric plexus ICC network (the primary pacemakers). Our findings demonstrated regional variation in ICC network density and thickness along the circumferential and longitudinal axis of the mouse antrum. An inverse relationship was observed in the distal and proximal antrum for density (proximal: 9.8±4.0% vs distal: 7.6±4.6%) and thickness (proximal: 15±3 μm vs distal: 24±10 μm). Limited variation in ICC process width was observed throughout the antrum (5±1 μm).Clinical Relevance- Detailed quantification of regional ICC structural properties will provide insights into the relationship between ICC structure, slow waves and resultant gut motility. This will improve techniques for the diagnosis and treatment of functional GI motility disorders.

摘要

Cajal间质细胞(ICC)是一种特殊的起搏细胞,可产生并主动传播被称为慢波的电生理事件。慢波调节胃肠道消化食物所需的运动。ICC网络结构的退化在定性上与多种胃肠道运动障碍相关。可以使用共聚焦显微镜获得ICC网络结构,但目前成像和分割技术的局限性阻碍了对网络的准确呈现。在本研究中,应用监督机器学习技术从三维共聚焦显微镜图像中提取ICC网络。结果表明,使用可训练WEKA分割的快速随机森林分类方法在灵敏度、准确性和F值方面优于决策表和朴素贝叶斯分类方法。使用快速随机森林分类器,对12个胃窦组织块进行了分割,并对肌间神经丛ICC网络(主要起搏点)的ICC网络厚度、密度和突起宽度的变化进行了量化。我们的研究结果表明,小鼠胃窦沿圆周和纵轴的ICC网络密度和厚度存在区域差异。在胃窦远端和近端观察到密度(近端:9.8±4.0%对远端:7.6±4.6%)和厚度(近端:15±3μm对远端:24±10μm)呈负相关。在整个胃窦中观察到ICC突起宽度的变化有限(5±1μm)。临床相关性——对区域ICC结构特性的详细量化将有助于深入了解ICC结构、慢波与肠道运动之间的关系。这将改进功能性胃肠运动障碍的诊断和治疗技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验