Suppr超能文献

胃肠道组织标本中 Cajal 间质细胞网络的三维分形分析

Three-Dimensional Fractal Analysis of the Interstitial Cells of Cajal Networks of Gastrointestinal Tissue Specimens.

作者信息

Mah Sue Ann, Avci Recep, Vanderwinden Jean-Marie, Du Peng

机构信息

Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.

Laboratoire de Neurophysiologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium.

出版信息

Cell Mol Bioeng. 2023 Nov 27;17(1):67-81. doi: 10.1007/s12195-023-00789-5. eCollection 2024 Feb.

Abstract

INTRODUCTION

Several functional gastrointestinal disorders (FGIDs) have been associated with the degradation or remodeling of the network of interstitial cells of Cajal (ICC). Introducing fractal analysis to the field of gastroenterology as a promising data analytics approach to extract key structural characteristics that may provide insightful features for machine learning applications in disease diagnostics. Fractal geometry has advantages over several physically based parameters (or classical metrics) for analysis of intricate and complex microstructures that could be applied to ICC networks.

METHODS

In this study, three fractal structural parameters: Fractal Dimension, Lacunarity, and Succolarity were employed to characterize scale-invariant complexity, heterogeneity, and anisotropy; respectively of three types of gastric ICC network structures from a flat-mount transgenic mouse stomach.

RESULTS

The Fractal Dimension of ICC in the longitudinal muscle layer was found to be significantly lower than ICC in the myenteric plexus and circumferential muscle in the proximal, and distal antrum, respectively (both p < 0.0001). Conversely, the Lacunarity parameters for ICC-LM and ICC-CM were found to be significantly higher than ICC-MP in the proximal and in the distal antrum, respectively (both p < 0.0001). The Succolarity measures of ICC-LM network in the aboral direction were found to be consistently higher in the proximal than in the distal antrum (p < 0.05).

CONCLUSIONS

The fractal parameters presented here could go beyond the limitation of classical metrics to provide better understanding of the structural-functional relationship between ICC networks and the conduction of gastric bioelectrical slow waves.

摘要

引言

几种功能性胃肠疾病(FGIDs)与 Cajal 间质细胞(ICC)网络的退化或重塑有关。将分形分析引入胃肠病学领域,作为一种有前景的数据分析方法,以提取关键结构特征,这些特征可为疾病诊断中的机器学习应用提供有洞察力的特征。分形几何在分析复杂的微观结构方面比一些基于物理的参数(或经典度量)具有优势,这些微观结构可应用于 ICC 网络。

方法

在本研究中,采用了三个分形结构参数:分形维数、孔隙率和起伏度,分别表征来自平铺转基因小鼠胃的三种类型胃 ICC 网络结构的尺度不变复杂性、异质性和各向异性。

结果

发现纵肌层 ICC 的分形维数分别显著低于近端和远端胃窦肌间神经丛及环肌层中的 ICC(均 p < 0.0001)。相反,发现近端和远端胃窦中 ICC-LM 和 ICC-CM 的孔隙率参数分别显著高于 ICC-MP(均 p < 0.0001)。发现 ICC-LM 网络在远侧方向的起伏度测量值在近端始终高于远端胃窦(p < 0.05)。

结论

本文提出的分形参数可以超越经典度量的局限性,以更好地理解 ICC 网络与胃生物电慢波传导之间的结构 - 功能关系。

相似文献

6
Supervised Machine Learning Segmentation and Quantification of Gastric Pacemaker Cells.胃起搏细胞的监督式机器学习分割与量化
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1408-1411. doi: 10.1109/EMBC44109.2020.9176445.

本文引用的文献

4
Foveal Remodeling of Retinal Microvasculature in Parkinson's Disease.帕金森病视网膜微血管的黄斑重塑
Front Neurosci. 2021 Jul 12;15:708700. doi: 10.3389/fnins.2021.708700. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验