Suppr超能文献

3对1管道:通过优化的生成对抗网络合成图像重构用于医学成像分类的迁移学习管道

3-To-1 Pipeline: Restructuring Transfer Learning Pipelines for Medical Imaging Classification via Optimized GAN Synthetic Images.

作者信息

Jian Choong Ross Zhi, Austin Harding Seth, Tang Bo-Yen, Liao Shih-Wei

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1596-1599. doi: 10.1109/EMBC44109.2020.9175392.

Abstract

The difficulty of applying deep learning algorithms to biomedical imaging systems arises from a lack of training images. An existing workaround to the lack of medical training images involves pre-training deep learning models on ImageNet, a non-medical dataset with millions of training images. However, the modality of ImageNet's dataset samples consisting of natural images in RGB frequently differs from the modality of medical images, consisting largely of images in grayscale such as X-ray and MRI scan imaging. While this method may be effectively applied to non-medical tasks such as human face detection, it proves ineffective in many areas of medical imaging. Recently proposed generative models such as Generative Adversarial Networks (GANs) are able to synthesize new medical images. By utilizing generated images, we may overcome the modality gap arising from current transfer learning methods. In this paper, we propose a training pipeline which outperforms both conventional GAN-synthetic methods and transfer learning methods.

摘要

将深度学习算法应用于生物医学成像系统存在困难,原因在于缺乏训练图像。针对医学训练图像不足的现有解决方法是在ImageNet(一个拥有数百万训练图像的非医学数据集)上对深度学习模型进行预训练。然而,ImageNet数据集样本的模态由RGB格式的自然图像组成,这与医学图像的模态常常不同,医学图像主要由灰度图像组成,如X光和核磁共振成像扫描图像。虽然这种方法可能有效地应用于诸如人脸检测等非医学任务,但在医学成像的许多领域却证明是无效的。最近提出的生成模型,如生成对抗网络(GAN),能够合成新的医学图像。通过利用生成的图像,我们可以克服当前迁移学习方法所产生的模态差距。在本文中,我们提出了一种训练流程,其性能优于传统的GAN合成方法和迁移学习方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验