Master of Science in Data Science, University of San Francisco, San Francisco, CA, 94105, USA.
Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94158, USA.
Med Phys. 2020 Dec;47(12):6246-6256. doi: 10.1002/mp.14507. Epub 2020 Oct 25.
PURPOSE: To perform an in-depth evaluation of current state of the art techniques in training neural networks to identify appropriate approaches in small datasets. METHOD: In total, 112,120 frontal-view X-ray images from the NIH ChestXray14 dataset were used in our analysis. Two tasks were studied: unbalanced multi-label classification of 14 diseases, and binary classification of pneumonia vs non-pneumonia. All datasets were randomly split into training, validation, and testing (70%, 10%, and 20%). Two popular convolution neural networks (CNNs), DensNet121 and ResNet50, were trained using PyTorch. We performed several experiments to test: (a) whether transfer learning using pretrained networks on ImageNet are of value to medical imaging/physics tasks (e.g., predicting toxicity from radiographic images after training on images from the internet), (b) whether using pretrained networks trained on problems that are similar to the target task helps transfer learning (e.g., using X-ray pretrained networks for X-ray target tasks), (c) whether freeze deep layers or change all weights provides an optimal transfer learning strategy, (d) the best strategy for the learning rate policy, and (e) what quantity of data is needed in order to appropriately deploy these various strategies (N = 50 to N = 77 880). RESULTS: In the multi-label problem, DensNet121 needed at least 1600 patients to be comparable to, and 10 000 to outperform, radiomics-based logistic regression. In classifying pneumonia vs non-pneumonia, both CNN and radiomics-based methods performed poorly when N < 2000. For small datasets ( < 2000), however, a significant boost in performance (>15% increase on AUC) comes from a good selection of the transfer learning dataset, dropout, cycling learning rate, and freezing and unfreezing of deep layers as training progresses. In contrast, if sufficient data are available (>35 000), little or no tweaking is needed to obtain impressive performance. While transfer learning using X-ray images from other anatomical sites improves performance, we also observed a similar boost by using pretrained networks from ImageNet. Having source images from the same anatomical site, however, outperforms every other methodology, by up to 15%. In this case, DL models can be trained with as little as N = 50. CONCLUSIONS: While training DL models in small datasets (N < 2000) is challenging, no tweaking is necessary for bigger datasets (N > 35 000). Using transfer learning with images from the same anatomical site can yield remarkable performance in new tasks with as few as N = 50. Surprisingly, we did not find any advantage for using images from other anatomical sites over networks that have been trained using ImageNet. This indicates that features learned may not be as general as currently believed, and performance decays rapidly even by just changing the anatomical site of the images.
目的:深入评估当前用于识别小数据集合适方法的神经网络训练技术现状。
方法:我们共分析了来自 NIH ChestXray14 数据集的 112120 张正位 X 射线图像。研究了两个任务:14 种疾病的不平衡多标签分类和肺炎与非肺炎的二分类。所有数据集均随机分为训练集、验证集和测试集(70%、10%和 20%)。使用 PyTorch 训练了两个流行的卷积神经网络(CNN),即 DensNet121 和 ResNet50。我们进行了多项实验来测试:(a)在 ImageNet 上使用预训练网络进行迁移学习是否对医学成像/物理任务有价值(例如,在训练来自互联网的图像的毒性后,从射线图像预测毒性),(b)使用与目标任务相似的预训练网络是否有助于迁移学习(例如,使用 X 射线预训练网络进行 X 射线目标任务),(c)冻结深层或更改所有权重是否提供最佳迁移学习策略,(d)最佳学习率策略,以及(e)为了适当部署这些各种策略需要多少数据量(N=50 至 N=77880)。
结果:在多标签问题中,DensNet121 需要至少 1600 名患者才能与基于放射组学的逻辑回归相媲美,并需要 10000 名患者才能超越基于放射组学的逻辑回归。在肺炎与非肺炎的分类中,当 N<2000 时,CNN 和基于放射组学的方法的性能都很差。然而,对于小数据集(<2000),通过选择合适的迁移学习数据集、随机失活、循环学习率以及冻结和解冻深层随着训练的进行,可以显著提高性能(AUC 提高超过 15%)。相比之下,如果有足够的数据(>35000),则几乎不需要或不需要进行调整即可获得令人印象深刻的性能。虽然使用来自其他解剖部位的 X 射线图像进行迁移学习可以提高性能,但我们也观察到使用来自 ImageNet 的预训练网络也会带来类似的提升。然而,使用来自同一解剖部位的源图像可以通过高达 15%的优势胜过其他任何方法。在这种情况下,DL 模型可以使用 N=50 进行训练。
结论:虽然在小数据集(N<2000)中训练 DL 模型具有挑战性,但对于更大的数据集(N>35000),则无需进行调整。使用来自同一解剖部位的图像进行迁移学习,可以在新任务中实现显著的性能,所需数据量仅为 N=50。令人惊讶的是,我们没有发现使用来自其他解剖部位的图像比使用经过 ImageNet 训练的网络有任何优势。这表明所学习的特征可能不如目前认为的那么通用,并且即使只是改变图像的解剖部位,性能也会迅速下降。
Annu Int Conf IEEE Eng Med Biol Soc. 2019-7
Front Endocrinol (Lausanne). 2024
Comput Methods Programs Biomed. 2021-9
Comput Methods Programs Biomed. 2019-10-31
J Digit Imaging. 2020-10
Comput Med Imaging Graph. 2019-5-18
J Xray Sci Technol. 2022
J Imaging Inform Med. 2024-12
J Magn Reson Imaging. 2024-12
Diagnostics (Basel). 2023-10-29
Front Neurosci. 2023-6-20