Suppr超能文献

结合解析信号利用卷积神经网络实现实时高质量超声弹性成像

Real-time and High Quality Ultrasound Elastography Using Convolutional Neural Network by Incorporating Analytic Signal.

作者信息

Tehrani Ali K Z, Amiri Mina, Rivaz Hassan

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2075-2078. doi: 10.1109/EMBC44109.2020.9176025.

Abstract

Convolutional Neural Networks (CNN) have been extensively used for many computer vision applications including optical flow estimation. Although CNNs have been very successful in optical flow problem, they have been rarely used for displacement estimation in Ultrasound Elastography (USE) due to vast differences between ultrasound data and computer vision images. In USE, a main goal is to obtain the strain image which is the derivative of the axial displacement in axial direction; therefore, a very accurate displacement estimation is required. Radio Frequency (RF) data is needed to obtain accurate displacement estimation. RF data contains high frequency contents which cannot be downsampled without significant loss of information, in contrast to computer vision images. We propose a novel technique to utilize LiteFlowNet for USE. For the first time, we incorporate analytic signal to improve the quality of the displacement estimation. We show that this network with the designed inputs is more suitable for USE compared to more complex networks such as FlowNet2. The network is adopted to our application and it is compared with FlowNet2 and a state-of-the-art elastography method (GLUE). The results show that this network performs well and comparable to GLUE. Furthermore, not only this network is faster and has lower memory footprint compared to FlowNet2, but also it obtains higher quality strain images which makes it suitable for portable and real-time elastography devices.

摘要

卷积神经网络(CNN)已被广泛应用于包括光流估计在内的许多计算机视觉应用中。尽管CNN在光流问题上非常成功,但由于超声数据与计算机视觉图像存在巨大差异,它们在超声弹性成像(USE)中的位移估计方面很少被使用。在USE中,一个主要目标是获得应变图像,它是轴向位移在轴向上的导数;因此,需要非常精确的位移估计。为了获得精确的位移估计,需要射频(RF)数据。与计算机视觉图像不同,RF数据包含高频成分,在不显著损失信息的情况下不能进行下采样。我们提出了一种利用LiteFlowNet进行USE的新技术。我们首次引入解析信号来提高位移估计的质量。我们表明,与诸如FlowNet2等更复杂的网络相比,具有设计输入的该网络更适合USE。该网络被应用于我们的应用中,并与FlowNet2和一种先进的弹性成像方法(GLUE)进行了比较。结果表明,该网络性能良好,与GLUE相当。此外,该网络不仅比FlowNet2更快且内存占用更低,而且还能获得更高质量的应变图像,这使其适用于便携式和实时弹性成像设备。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验