IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Dec;67(12):2629-2639. doi: 10.1109/TUFFC.2020.2973047. Epub 2020 Nov 24.
In this article, two novel deep learning methods are proposed for displacement estimation in ultrasound elastography (USE). Although convolutional neural networks (CNNs) have been very successful for displacement estimation in computer vision, they have been rarely used for USE. One of the main limitations is that the radio frequency (RF) ultrasound data, which is crucial for precise displacement estimation, has vastly different frequency characteristics compared with images in computer vision. Top-rank CNN methods used in computer vision applications are mostly based on a multilevel strategy, which estimates finer resolution based on coarser ones. This strategy does not work well for RF data due to its large high-frequency content. To mitigate the problem, we propose modified pyramid warping and cost volume network (MPWC-Net) and RFMPWC-Net, both based on PWC-Net, to exploit information in RF data by employing two different strategies. We obtained promising results using networks trained only on computer vision images. In the next step, we constructed a large ultrasound simulation database and proposed a new loss function to fine-tune the network to improve its performance. The proposed networks and well-known optical flow networks as well as state-of-the-art elastography methods are evaluated using simulation, phantom, and in vivo data. Our two proposed networks substantially outperform current deep learning methods in terms of contrast-to-noise ratio (CNR) and strain ratio (SR). Also, the proposed methods perform similar to the state-of-the-art elastography methods in terms of CNR and have better SR by substantially reducing the underestimation bias.
本文提出了两种用于超声弹性成像(USE)中位移估计的新的深度学习方法。虽然卷积神经网络(CNNs)在计算机视觉中的位移估计中取得了非常成功的结果,但它们在 USE 中很少被使用。其中一个主要限制是,对于精确的位移估计至关重要的射频(RF)超声数据与计算机视觉中的图像具有截然不同的频率特性。计算机视觉应用中使用的顶级 CNN 方法大多基于多级策略,该策略基于较粗的分辨率来估计更精细的分辨率。由于 RF 数据具有较大的高频内容,因此该策略不适用于 RF 数据。为了解决这个问题,我们提出了基于 PWC-Net 的修改后的金字塔扭曲和代价体网络(MPWC-Net)和 RFMPWC-Net,它们都通过采用两种不同的策略来利用 RF 数据中的信息。我们仅使用经过计算机视觉图像训练的网络获得了有希望的结果。在下一步中,我们构建了一个大型超声模拟数据库,并提出了一种新的损失函数来微调网络以提高其性能。所提出的网络和著名的光流网络以及最先进的弹性成像方法使用仿真、体模和体内数据进行了评估。我们提出的两种网络在对比噪声比(CNR)和应变比(SR)方面明显优于当前的深度学习方法。此外,所提出的方法在 CNR 方面与最先进的弹性成像方法相当,并且通过大大减少低估偏差,具有更好的 SR。