Suppr超能文献

基于神经网络的乳腺超声应变弹性成像运动跟踪:性能和可行性的初步评估。

Neural-network-based Motion Tracking for Breast Ultrasound Strain Elastography: An Initial Assessment of Performance and Feasibility.

机构信息

School of Computer Science, Southwest Petroleum University, Chengdu, Sichuan, China.

Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA.

出版信息

Ultrason Imaging. 2020 Mar;42(2):74-91. doi: 10.1177/0161734620902527. Epub 2020 Jan 30.

Abstract

Accurate tracking of tissue motion is critically important for several ultrasound elastography methods. In this study, we investigate the feasibility of using three published convolution neural network (CNN) models built for optical flow (hereafter referred to as CNN-based tracking) by the computer vision community for breast ultrasound strain elastography. Elastographic datasets produced by finite element and ultrasound simulations were used to retrain three published CNN models: FlowNet-CSS, PWC-Net, and LiteFlowNet. After retraining, the three improved CNN models were evaluated using computer-simulated and tissue-mimicking phantoms, and in vivo breast ultrasound data. CNN-based tracking results were compared with two published two-dimensional (2D) speckle tracking methods: coupled tracking and GLobal Ultrasound Elastography (GLUE) methods. Our preliminary data showed that, based on the Wilcoxon rank-sum tests, the improvements due to retraining were statistically significant (p < 0.05) for all three CNN models. We also found that the PWC-Net model was the best neural network model for data investigated, and its overall performance was on par with the coupled tracking method. CNR values estimated from in vivo axial and lateral strain elastograms showed that the GLUE algorithm outperformed both the retrained PWC-Net model and the coupled tracking method, though the GLUE algorithm exhibited some biases. The PWC-Net model was also able to achieve approximately 45 frames/second for 2D speckle tracking data investigated.

摘要

准确跟踪组织运动对于几种超声弹性成像方法至关重要。在这项研究中,我们研究了计算机视觉社区为光流开发的三个已发表的卷积神经网络 (CNN) 模型(以下简称基于 CNN 的跟踪)在乳腺超声应变成像中的应用的可行性。使用有限元法和超声模拟产生的弹性数据集来重新训练三个已发表的 CNN 模型:FlowNet-CSS、PWC-Net 和 LiteFlowNet。在重新训练后,使用计算机模拟和组织模拟体模以及体内乳腺超声数据评估了三个改进的 CNN 模型。基于 CNN 的跟踪结果与两种已发表的二维 (2D) 散斑跟踪方法(耦合跟踪和 GLobal Ultrasound Elastography (GLUE) 方法)进行了比较。我们的初步数据表明,基于 Wilcoxon 秩和检验,对于所有三个 CNN 模型,重新训练的改进均具有统计学意义 (p < 0.05)。我们还发现,PWC-Net 模型是所研究数据的最佳神经网络模型,其整体性能与耦合跟踪方法相当。从体内轴向和横向应变弹性图估计的 CNR 值表明,GLUE 算法优于重新训练的 PWC-Net 模型和耦合跟踪方法,尽管 GLUE 算法存在一些偏差。PWC-Net 模型还能够实现大约 45 帧/秒的 2D 散斑跟踪数据。

相似文献

1
2
Convolutional Neural Network-Based Speckle Tracking for Ultrasound Strain Elastography: An Unsupervised Learning Approach.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 May;70(5):354-367. doi: 10.1109/TUFFC.2023.3243539. Epub 2023 Apr 26.
3
A PDE-Based Regularization Algorithm Toward Reducing Speckle Tracking Noise: A Feasibility Study for Ultrasound Breast Elastography.
Ultrason Imaging. 2015 Oct;37(4):277-93. doi: 10.1177/0161734614561128. Epub 2014 Nov 30.
4
A coupled subsample displacement estimation method for ultrasound-based strain elastography.
Phys Med Biol. 2015 Nov 7;60(21):8347-64. doi: 10.1088/0031-9155/60/21/8347. Epub 2015 Oct 12.
5
A novel tissue mechanics-based method for improved motion tracking in quasi-static ultrasound elastography.
Med Phys. 2023 Apr;50(4):2176-2194. doi: 10.1002/mp.16110. Epub 2022 Dec 8.
6
Three-dimensional Ultrasound Elasticity Imaging on an Automated Breast Volume Scanning System.
Ultrason Imaging. 2017 Nov;39(6):369-392. doi: 10.1177/0161734617712238. Epub 2017 Jun 6.
8
Large-Strain 3-D in Vivo Breast Ultrasound Strain Elastography Using a Multi-compression Strategy and a Whole-Breast Scanning System.
Ultrasound Med Biol. 2019 Dec;45(12):3145-3159. doi: 10.1016/j.ultrasmedbio.2019.08.013. Epub 2019 Sep 21.
9
A Normalized Shear Deformation Indicator for Ultrasound Strain Elastography in Breast Tissues: An Feasibility Study.
Biomed Res Int. 2018 Feb 12;2018:2053612. doi: 10.1155/2018/2053612. eCollection 2018.
10
Hybrid algorithm for elastography to visualize both solid and fluid-filled lesions.
Ultrasound Med Biol. 2015 Apr;41(4):1058-78. doi: 10.1016/j.ultrasmedbio.2014.11.007. Epub 2015 Feb 17.

引用本文的文献

2
MixTURE: L1-Norm-Based Mixed Second-Order Continuity in Strain Tensor Ultrasound Elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Nov;71(11):1389-1405. doi: 10.1109/TUFFC.2024.3449815. Epub 2024 Nov 27.
5
Therapeutic Ultrasound Effects on Human Induced Pluripotent Stem Cell Cardiomyocytes Measured Optically and with Spectral Ultrasound.
Ultrasound Med Biol. 2022 Jun;48(6):1078-1094. doi: 10.1016/j.ultrasmedbio.2022.02.006. Epub 2022 Mar 15.
6
An unsupervised learning approach to ultrasound strain elastography with spatio-temporal consistency.
Phys Med Biol. 2021 Sep 3;66(17):175031. doi: 10.1088/1361-6560/ac176a.
7
Deep Convolutional Neural Networks for Displacement Estimation in ARFI Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2472-2481. doi: 10.1109/TUFFC.2021.3068377. Epub 2021 Jul 5.

本文引用的文献

1
A 3-D Region-Growing Motion-Tracking Method for Ultrasound Elasticity Imaging.
Ultrasound Med Biol. 2018 Aug;44(8):1638-1653. doi: 10.1016/j.ultrasmedbio.2018.04.011. Epub 2018 May 18.
2
Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a Deep Cascaded Neural Network.
J Healthc Eng. 2018 Mar 19;2018:4940593. doi: 10.1155/2018/4940593. eCollection 2018.
3
Global Time-Delay Estimation in Ultrasound Elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Oct;64(10):1625-1636. doi: 10.1109/TUFFC.2017.2717933. Epub 2017 Jun 21.
4
Three-dimensional Ultrasound Elasticity Imaging on an Automated Breast Volume Scanning System.
Ultrason Imaging. 2017 Nov;39(6):369-392. doi: 10.1177/0161734617712238. Epub 2017 Jun 6.
5
A GPU-Accelerated 3-D Coupled Subsample Estimation Algorithm for Volumetric Breast Strain Elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Apr;64(4):694-705. doi: 10.1109/TUFFC.2017.2661821. Epub 2017 Jan 31.
6
Building an open-source simulation platform of acoustic radiation force-based breast elastography.
Phys Med Biol. 2017 Mar 7;62(5):1949-1968. doi: 10.1088/1361-6560/aa58c9. Epub 2017 Jan 11.
7
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
8
A coupled subsample displacement estimation method for ultrasound-based strain elastography.
Phys Med Biol. 2015 Nov 7;60(21):8347-64. doi: 10.1088/0031-9155/60/21/8347. Epub 2015 Oct 12.
10
WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology.
Ultrasound Med Biol. 2015 May;41(5):1126-47. doi: 10.1016/j.ultrasmedbio.2015.03.009. Epub 2015 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验