Suppr超能文献

通过深度学习学习宽场钙成像数据的时空特征来检测轻度创伤性脑损伤

Detecting mTBI by Learning Spatio-temporal Characteristics of Widefield Calcium Imaging Data Using Deep Learning.

作者信息

Koochaki Fatemeh, Shamsi Foroogh, Najafizadeh Laleh

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2917-2920. doi: 10.1109/EMBC44109.2020.9175327.

Abstract

Early diagnosis of mild traumatic brain injury (mTBI) is of great interest to the neuroscience and medical communities. Widefield optical imaging of neuronal populations over the cerebral cortex in animals provides a unique opportunity to study injury-induced alternations in brain function. Using this technique, along with deep learning, the goal of this paper is to develop a framework for the detection of mTBI. Cortical activities in transgenic calcium reporter mice expressing GCaMP6s are obtained using widefield imaging from 8 mice before and after inducing an injury. Two deep learning models for differentiating mTBI from normal conditions are proposed. One model is based on the convolutional neural network-long short term memory (CNN-LSTM), and the second model is based on a 3D-convolutional neural network (3D-CNN). These two models offer the ability to capture features both in the spatial and temporal domains. Results for the average classification accuracy for the CNN-LSTM and the 3D-CNN are 97.24% and 91.34%, respectively. These results are notably higher than the case of using the classical machine learning methods, demonstrating the importance of utilizing both the spatial and temporal information for early detection of mTBI.

摘要

轻度创伤性脑损伤(mTBI)的早期诊断引起了神经科学和医学界的极大兴趣。对动物大脑皮层神经元群体进行宽场光学成像为研究损伤引起的脑功能变化提供了独特的机会。利用这项技术,结合深度学习,本文的目标是开发一个用于检测mTBI的框架。使用宽场成像从8只转基因钙报告基因小鼠(表达GCaMP6s)诱导损伤前后获取皮层活动。提出了两种用于区分mTBI与正常情况的深度学习模型。一种模型基于卷积神经网络-长短期记忆(CNN-LSTM),第二种模型基于三维卷积神经网络(3D-CNN)。这两种模型能够在空间和时间域中捕捉特征。CNN-LSTM和3D-CNN的平均分类准确率分别为97.24%和91.34%。这些结果显著高于使用经典机器学习方法的情况,证明了利用空间和时间信息进行mTBI早期检测的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验