Suppr超能文献

通过拓扑图嵌入和二维卷积神经网络检测轻度创伤性脑损伤

Detection of Mild Traumatic Brain Injury via Topological Graph Embedding and 2D Convolutional Neural Networks.

作者信息

Salsabilian Shiva, Najafizadeh Laleh

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3715-3718. doi: 10.1109/EMBC44109.2020.9175800.

Abstract

Early diagnosis of mild traumatic brain injury (mTBI) is challenging, yet significantly important in order to grant the patients with timely treatment and mitigating the risks of possible long-term psychiatric and neurological disorders. To tackle this problem, in this paper, we develop an mTBI detection framework based on graph embedding features combined with convolutional neural networks (CNN). Cortical activity in transgenic calcium reporter mice expressing Thy1-GCaMP6s is recorded in two sessions, prior to and after inducing injury. Functional networks are then constructed for recordings obtained in each session. The Node2vec algorithm is employed to represent nodes of these networks in the node embedding space. Node embedding feature vectors are then aligned, compressed, and represented as three-channel images. A CNN model is used for the classification of brain networks into two categories of normal and mTBI. A maximum classification accuracy of 95.4% is achieved. Our results suggest that functional networks as biomarkers along with the proposed method can effectively be used for detecting mTBI.

摘要

轻度创伤性脑损伤(mTBI)的早期诊断具有挑战性,但为患者提供及时治疗并降低可能出现的长期精神和神经疾病风险却极为重要。为解决这一问题,本文基于图嵌入特征结合卷积神经网络(CNN)开发了一种mTBI检测框架。在诱导损伤前后的两个阶段记录表达Thy1-GCaMP6s的转基因钙报告小鼠的皮质活动。然后为每个阶段获得的记录构建功能网络。使用Node2vec算法在节点嵌入空间中表示这些网络的节点。接着对节点嵌入特征向量进行对齐、压缩,并表示为三通道图像。使用CNN模型将脑网络分为正常和mTBI两类。分类准确率最高达到95.4%。我们的结果表明,功能网络作为生物标志物以及所提出的方法可有效用于检测mTBI。

相似文献

6
RNN-based longitudinal analysis for diagnosis of Alzheimer's disease.基于 RNN 的阿尔茨海默病纵向分析诊断。
Comput Med Imaging Graph. 2019 Apr;73:1-10. doi: 10.1016/j.compmedimag.2019.01.005. Epub 2019 Jan 26.
8
Brain Network Analysis and Classification Based on Convolutional Neural Network.基于卷积神经网络的脑网络分析与分类
Front Comput Neurosci. 2018 Dec 10;12:95. doi: 10.3389/fncom.2018.00095. eCollection 2018.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验