Suppr超能文献

用于识别轻度创伤性脑损伤和预测恢复的暹罗卷积神经网络。

A Siamese Convolutional Neural Network for Identifying Mild Traumatic Brain Injury and Predicting Recovery.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:1779-1786. doi: 10.1109/TNSRE.2024.3391067. Epub 2024 May 9.

Abstract

Timely diagnosis of mild traumatic brain injury (mTBI) remains challenging due to the rapid recovery of acute symptoms and the absence of evidence of injury in static neuroimaging scans. Furthermore, while longitudinal tracking of mTBI is essential in understanding how the diseases progresses/regresses over time for enhancing personalized patient care, a standardized approach for this purpose is not yet available. Recent functional neuroimaging studies have provided evidence of brain function alterations following mTBI, suggesting mTBI-detection models can be built based on these changes. Most of these models, however, rely on manual feature engineering, but the optimal set of features for detecting mTBI may be unknown. Data-driven approaches, on the other hand, may uncover hidden relationships in an automated manner, making them suitable for the problem of mTBI detection. This paper presents a data-driven framework based on Siamese Convolutional Neural Network (SCNN) to detect mTBI and to monitor the recovery state from mTBI over time. The proposed framework is tested on the cortical images of Thy1-GCaMP6s mice, obtained via widefield calcium imaging, acquired in a longitudinal study. Results show that the proposed model achieves a classification accuracy of 96.5%. To track the state of the injured brain over time, a reference distance map is constructed, which together with the SCNN model, are employed to assess the recovery state in subsequent sessions after injury, revealing that the recovery progress varies among subjects. The promising results of this work suggest that a similar approach could be potentially applicable for monitoring recovery from mTBI, in humans.

摘要

由于急性症状迅速恢复以及静态神经影像学扫描中没有损伤证据,轻度创伤性脑损伤 (mTBI) 的及时诊断仍然具有挑战性。此外,虽然对 mTBI 的纵向跟踪对于了解疾病随时间如何进展/消退以增强个性化患者护理至关重要,但目前还没有为此目的的标准化方法。最近的功能神经影像学研究为 mTBI 后大脑功能改变提供了证据,表明可以基于这些变化构建 mTBI 检测模型。然而,这些模型中的大多数都依赖于手动特征工程,但用于检测 mTBI 的最佳特征集可能未知。另一方面,数据驱动方法可以以自动方式揭示隐藏的关系,因此非常适合 mTBI 检测问题。本文提出了一种基于 Siamese 卷积神经网络 (SCNN) 的数据驱动框架,用于检测 mTBI 并随时间监测 mTBI 的恢复状态。该框架在通过宽场钙成像获得的 Thy1-GCaMP6s 小鼠皮质图像上进行了测试,这些图像是在一项纵向研究中获得的。结果表明,所提出的模型实现了 96.5%的分类准确率。为了随时间跟踪受损大脑的状态,构建了参考距离图,该图与 SCNN 模型一起用于评估损伤后后续会话中的恢复状态,结果表明恢复进展因个体而异。这项工作的有希望的结果表明,类似的方法可能可用于监测人类 mTBI 的恢复情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验