Martineau Thomas, He Shenghong, Vaidyanathan Ravi, Brown Peter, Tan Huiling
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3023-3026. doi: 10.1109/EMBC44109.2020.9175885.
Neural oscillating patterns, or time-frequency features, predicting voluntary motor intention, can be extracted from the local field potentials (LFPs) recorded from the sub-thalamic nucleus (STN) or thalamus of human patients implanted with deep brain stimulation (DBS) electrodes for the treatment of movement disorders. This paper investigates the optimization of signal conditioning processes using deep learning to augment time-frequency feature extraction from LFP signals, with the aim of improving the performance of real-time decoding of voluntary motor states. A brain-computer interface (BCI) pipeline capable of continuously classifying discrete pinch grip states from LFPs was designed in Pytorch, a deep learning framework. The pipeline was implemented offline on LFPs recorded from 5 different patients bilaterally implanted with DBS electrodes. Optimizing channel combination in different frequency bands and frequency domain feature extraction demonstrated improved classification accuracy of pinch grip detection and laterality of the pinch (either pinch of the left hand or pinch of the right hand). Overall, the optimized BCI pipeline achieved a maximal average classification accuracy of 79.67±10.02% when detecting all pinches and 67.06±10.14% when considering the laterality of the pinch.
可以从植入深部脑刺激(DBS)电极以治疗运动障碍的人类患者的丘脑底核(STN)或丘脑记录的局部场电位(LFP)中提取预测自愿运动意图的神经振荡模式或时频特征。本文研究了使用深度学习优化信号调节过程,以增强从LFP信号中提取时频特征,目的是提高自愿运动状态实时解码的性能。在深度学习框架Pytorch中设计了一种能够从LFP连续分类离散捏握状态的脑机接口(BCI)管道。该管道在从双侧植入DBS电极的5名不同患者记录的LFP上进行离线实现。优化不同频带中的通道组合和频域特征提取,证明了捏握检测的分类准确率提高,以及捏握的方向(左手捏或右手捏)。总体而言,优化后的BCI管道在检测所有捏握时的最大平均分类准确率为79.67±10.02%,在考虑捏握方向时为67.06±10.14%。