IEEE Trans Neural Syst Rehabil Eng. 2018 Jul;26(7):1460-1468. doi: 10.1109/TNSRE.2018.2837500.
Lack of force information and longevity issues are impediments to the successful translation of brain-computer interface systems for prosthetic control from experimental settings to widespread clinical application. The ability to decode force using deep brain stimulation electrodes in the subthalamic nucleus (STN) of the basal ganglia provides an opportunity to address these limitations. This paper explores the use of various classes of algorithms (Wiener filter, Wiener-Cascade model, Kalman filter, and dynamic neural networks) and recommends the use of a Wiener-Cascade model for decoding force from STN. This recommendation is influenced by a combination of accuracy and practical considerations to enable real-time, continuous operation. This paper demonstrates an ability to decode a continuous signal (force) from the STN in real time, allowing the possibility of decoding more than two states from the brain at low latency.
力信息缺失和寿命问题是将脑机接口系统从实验环境成功转化为广泛临床应用的障碍。使用基底神经节的丘脑底核(STN)中的深部脑刺激电极解码力的能力提供了一种解决这些限制的机会。本文探讨了使用各种类别的算法(Wiener 滤波器、Wiener 级联模型、卡尔曼滤波器和动态神经网络)的可能性,并建议使用 Wiener 级联模型从 STN 解码力。这种建议受到准确性和实际考虑的综合影响,以实现实时、连续的操作。本文证明了从 STN 实时解码连续信号(力)的能力,从而有可能以低延迟从大脑解码超过两种状态。