Suppr超能文献

双任务步态评估与机器学习用于认知衰退的早期检测

Dual-Task Gait Assessment and Machine Learning for Early-detection of Cognitive Decline.

作者信息

Boettcher Lillian N, Hssayeni Murtadha, Rosenfeld Amie, Tolea Magdalena I, Galvin James E, Ghoraani Behnaz

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3204-3207. doi: 10.1109/EMBC44109.2020.9175955.

Abstract

Alzheimer's disease (AD) affects approximately 30 million people worldwide, and this number is predicted to triple by 2050 unless further discoveries facilitate the early detection and prevention of the disease. Computerized walkways for simultaneous assessment of motor-cognitive performance, known as a dual-task assessment, has been used to associate changes in gait characteristics to mild cognitive impairment (MCI) with early-stage disease. However, to our best knowledge, there is no validated method to detect MCI using the collective analysis of these gait characteristics. In this paper, we develop a machine learning approach to analyze the gait data from the dual-task assessment in order to detect subjects with cognitive impairment from healthy individuals. We collected dual-task gait data from a computerized walkway of a total of 92 subjects with 31 healthy control (HC) and 61 MCI. Using support vector machine (SVM) and gradient tree boosting, we developed a classifier to differentiate MCI from HC subjects and compared the results with a paper-based questionnaire assessment that has been commonly used in clinical practice. SVM provided the highest accuracy of 77.17% with 81.97% sensitivity and 67.74% specificity. Our results indicate the potential of machine learning + dual-task assessment to enable early diagnosis of cognitive decline before it advances to dementia and AD, so that early intervention or prevention strategies can be initiated.

摘要

阿尔茨海默病(AD)在全球约影响3000万人,预计到2050年这一数字将增至三倍,除非有更多新发现助力该疾病的早期检测与预防。用于同步评估运动认知表现的计算机化步道,即所谓的双任务评估,已被用于将步态特征的变化与早期疾病的轻度认知障碍(MCI)联系起来。然而,据我们所知,尚无经过验证的方法可利用这些步态特征的综合分析来检测MCI。在本文中,我们开发了一种机器学习方法来分析双任务评估中的步态数据,以便从健康个体中检测出认知受损的受试者。我们从计算机化步道收集了总共92名受试者的双任务步态数据,其中31名是健康对照(HC),61名是MCI患者。我们使用支持向量机(SVM)和梯度树提升算法开发了一个分类器,以区分MCI患者和HC受试者,并将结果与临床实践中常用的纸质问卷评估进行比较。SVM的准确率最高,为77.17%,灵敏度为81.97%,特异性为67.74%。我们的结果表明,机器学习+双任务评估有潜力在认知衰退发展为痴呆和AD之前实现早期诊断,从而能够启动早期干预或预防策略。

相似文献

1
Dual-Task Gait Assessment and Machine Learning for Early-detection of Cognitive Decline.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3204-3207. doi: 10.1109/EMBC44109.2020.9175955.
2
Detection of Mild Cognitive Impairment and Alzheimer's Disease using Dual-task Gait Assessments and Machine Learning.
Biomed Signal Process Control. 2021 Feb;64. doi: 10.1016/j.bspc.2020.102249. Epub 2020 Oct 16.
3
ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer's disease.
Neuroimage Clin. 2014 Jan 4;4:461-72. doi: 10.1016/j.nicl.2013.12.012. eCollection 2014.
5
Plasma d-glutamate levels for detecting mild cognitive impairment and Alzheimer's disease: Machine learning approaches.
J Psychopharmacol. 2021 Mar;35(3):265-272. doi: 10.1177/0269881120972331. Epub 2021 Feb 15.
6
[A study of cognitive impairment quantitative assessment method based on gait characteristics].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Apr 25;41(2):281-287. doi: 10.7507/1001-5515.202305019.
7
Multivariate Data Analysis and Machine Learning for Prediction of MCI-to-AD Conversion.
Adv Exp Med Biol. 2020;1194:81-103. doi: 10.1007/978-3-030-32622-7_8.

引用本文的文献

1
Advances in gait research related to Alzheimer's disease.
Front Neurol. 2025 Jun 3;16:1548283. doi: 10.3389/fneur.2025.1548283. eCollection 2025.
2
Detecting cognitive impairment in cerebrovascular disease using gait, dual tasks, and machine learning.
BMC Med Inform Decis Mak. 2025 Apr 1;25(1):157. doi: 10.1186/s12911-025-02979-9.
3
Feasibility of assessing cognitive impairment via distributed camera network and privacy-preserving edge computing.
Alzheimers Dement (Amst). 2025 Feb 24;17(1):e70085. doi: 10.1002/dad2.70085. eCollection 2025 Jan-Mar.
6
Diagnostic Efficacy and Clinical Relevance of Artificial Intelligence in Detecting Cognitive Decline.
Cureus. 2023 Oct 13;15(10):e47004. doi: 10.7759/cureus.47004. eCollection 2023 Oct.
7
Identification of a Gait Pattern for Detecting Mild Cognitive Impairment in Parkinson's Disease.
Sensors (Basel). 2023 Feb 10;23(4):1985. doi: 10.3390/s23041985.
9
Artificial Intelligence Models in the Diagnosis of Adult-Onset Dementia Disorders: A Review.
Bioengineering (Basel). 2022 Aug 5;9(8):370. doi: 10.3390/bioengineering9080370.

本文引用的文献

3
Objective measurement of gait parameters in healthy and cognitively impaired elderly using the dual-task paradigm.
Aging Clin Exp Res. 2017 Dec;29(6):1181-1189. doi: 10.1007/s40520-016-0703-6. Epub 2017 Jan 27.
4
On the early diagnosis of Alzheimer's Disease from multimodal signals: A survey.
Artif Intell Med. 2016 Jul;71:1-29. doi: 10.1016/j.artmed.2016.06.003. Epub 2016 Jun 23.
5
Gait and cognition: Mapping the global and discrete relationships in ageing and neurodegenerative disease.
Neurosci Biobehav Rev. 2016 May;64:326-45. doi: 10.1016/j.neubiorev.2016.02.012. Epub 2016 Feb 23.
6
7
Association between high variability of gait speed and mild cognitive impairment: a cross-sectional pilot study.
J Am Geriatr Soc. 2011 Oct;59(10):1973-4. doi: 10.1111/j.1532-5415.2011.03610_9.x.
8
Gait analysis in demented subjects: Interests and perspectives.
Neuropsychiatr Dis Treat. 2008 Feb;4(1):155-60. doi: 10.2147/ndt.s2070.
9
Gait dysfunction in mild cognitive impairment syndromes.
J Am Geriatr Soc. 2008 Jul;56(7):1244-51. doi: 10.1111/j.1532-5415.2008.01758.x. Epub 2008 May 14.
10
Gait in ageing and associated dementias; its relationship with cognition.
Neurosci Biobehav Rev. 2007;31(4):485-97. doi: 10.1016/j.neubiorev.2006.11.007. Epub 2007 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验