Suppr超能文献

从单试次脑电图中解码听觉注意力以实现高效脑机接口

Decoding auditory attention from single-trial EEG for a high-efficiency brain-computer interface.

作者信息

An Winko W, Pei Alexander, Noyce Abigail L, Shinn-Cunningham Barbara

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3456-3459. doi: 10.1109/EMBC44109.2020.9175753.

Abstract

Brain-computer interface (BCI) systems enable humans to communicate with a machine in a non-verbal and covert way. Many past BCI designs used visual stimuli, due to the robustness of neural signatures evoked by visual input. However, these BCI systems can only be used when visual attention is available. This study proposes a new BCI design using auditory stimuli, decoding spatial attention from electroencephalography (EEG). Results show that this new approach can decode attention with a high accuracy (>75%) and has a high information transfer rate (>10 bits/min) compared to other auditory BCI systems. It also has the potential to allow decoding that does not depend on subject-specific training.

摘要

脑机接口(BCI)系统使人类能够以非语言和隐蔽的方式与机器进行通信。过去许多BCI设计使用视觉刺激,这是因为视觉输入诱发的神经信号具有稳健性。然而,这些BCI系统只有在视觉注意力可用时才能使用。本研究提出了一种使用听觉刺激的新型BCI设计,从脑电图(EEG)中解码空间注意力。结果表明,与其他听觉BCI系统相比,这种新方法能够以高精度(>75%)解码注意力,并且具有高信息传输率(>10比特/分钟)。它还具有允许进行不依赖于特定受试者训练的解码的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验