Suppr超能文献

一种基于隐蔽视觉空间注意的在线 EEG BCI,无需外源性刺激。

An online EEG BCI based on covert visuospatial attention in absence of exogenous stimulation.

机构信息

Chair in Non-Invasive Brain-Machine Interface, École Polytecnique Fédérale de Lausanne, Lausanne, Switzerland.

出版信息

J Neural Eng. 2013 Oct;10(5):056007. doi: 10.1088/1741-2560/10/5/056007. Epub 2013 Aug 5.

Abstract

OBJECTIVE

In this work we present--for the first time--the online operation of an electroencephalogram (EEG) brain-computer interface (BCI) system based on covert visuospatial attention (CVSA), without relying on any evoked responses. Electrophysiological correlates of pure top-down CVSA have only recently been proposed as a control signal for BCI. Such systems are expected to share the ease of use of stimulus-driven BCIs (e.g. P300, steady state visually evoked potential) with the autonomy afforded by decoding voluntary modulations of ongoing activity (e.g. motor imagery).

APPROACH

Eight healthy subjects participated in the study. EEG signals were acquired with an active 64-channel system. The classification method was based on a time-dependent approach tuned to capture the most discriminant spectral features of the temporal evolution of attentional processes. The system was used by all subjects over two days without retraining, to verify its robustness and reliability.

MAIN RESULTS

We report a mean online accuracy across the group of 70.6 ± 1.5%, and 88.8 ± 5.8% for the best subject. Half of the participants produced stable features over the entire duration of the study. Additionally, we explain drops in performance in subjects showing stable features in terms of known electrophysiological correlates of fatigue, suggesting the prospect of online monitoring of mental states in BCI systems.

SIGNIFICANCE

This work represents the first demonstration of the feasibility of an online EEG BCI based on CVSA. The results achieved suggest the CVSA BCI as a promising alternative to standard BCI modalities.

摘要

目的

在这项工作中,我们首次展示了一种基于隐蔽视空间注意(CVSA)的脑电图(EEG)脑机接口(BCI)系统的在线运行,而不依赖任何诱发反应。纯自上而下的 CVSA 的电生理相关物最近才被提出作为 BCI 的控制信号。这类系统有望兼具刺激驱动的 BCI(如 P300、稳态视觉诱发电位)的易用性和对正在进行的活动的自愿调制的自主性(如运动想象)。

方法

八名健康受试者参与了研究。EEG 信号是使用主动的 64 通道系统采集的。分类方法基于时间相关的方法,旨在捕捉注意过程的时间演化中最具判别力的频谱特征。该系统在两天内无需重新训练就被所有受试者使用,以验证其稳健性和可靠性。

主要结果

我们报告了整个组的平均在线准确率为 70.6±1.5%,最佳受试者的准确率为 88.8±5.8%。一半的参与者在整个研究过程中产生了稳定的特征。此外,我们根据已知的疲劳电生理相关物,解释了在表现出稳定特征的受试者中性能下降的原因,这表明在 BCI 系统中可以在线监测心理状态。

意义

这项工作代表了基于 CVSA 的在线 EEG BCI 可行性的首次演示。所取得的结果表明,CVSA BCI 是标准 BCI 模式的一种有前途的替代方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验