Prasanth Thangavel, Thomas John, Yuvaraj R, Jing Jing, Cash Sydney S, Chaudhari Rima, Leng Tan Yee, Rathakrishnan Rahul, Rohit Srivastava, Saini Vinay, Westover Brandon M, Dauwels Justin
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3703-3706. doi: 10.1109/EMBC44109.2020.9175644.
Epilepsy diagnosis through visual examination of interictal epileptiform discharges (IEDs) in scalp electroencephalogram (EEG) signals is a challenging problem. Deep learning methods can be an automated way to perform this task. In this work, we present a new approach based on convolutional neural network (CNN) to detect IEDs from EEGs automatically. The input to CNN is a combination of raw EEG and frequency sub-bands, namely delta, theta, alpha and, beta arranged as a vector for one-dimensional (1D) CNN or matrix for two-dimensional (2D) CNN. The proposed method is evaluated on 554 scalp EEGs. The database consists of 18,164 IEDs marked by two neurologists. Five-fold cross-validation was performed to assess the IED detectors. The resulting 1D CNN based IED detector with multiple sub-bands achieved a false positive rate per minute of 0.23 and a precision of 0.79 at 90% sensitivity. Further, the proposed system is evaluated on datasets from three other clinics, and the features extracted from CNN outputs could significantly discriminate (p-values <; 0.05) the EEGs with and without IEDs. We have proposed an optimized method with better performance than the literature that could aid clinicians to diagnose epilepsy expeditiously, and thereby devise proper treatment.
通过目视检查头皮脑电图(EEG)信号中的发作间期癫痫样放电(IED)来诊断癫痫是一个具有挑战性的问题。深度学习方法可以成为执行这项任务的一种自动化方式。在这项工作中,我们提出了一种基于卷积神经网络(CNN)的新方法,用于自动从脑电图中检测发作间期癫痫样放电。CNN的输入是原始脑电图和频率子带(即δ、θ、α和β)的组合,它们被排列成一维(1D)CNN的向量或二维(2D)CNN的矩阵。所提出的方法在554份头皮脑电图上进行了评估。该数据库包含由两位神经科医生标记的18164次发作间期癫痫样放电。进行了五折交叉验证以评估发作间期癫痫样放电检测器。基于1D CNN的多子带发作间期癫痫样放电检测器在90%灵敏度下实现了每分钟0.23的假阳性率和0.79的精度。此外,所提出的系统在来自其他三家诊所的数据集上进行了评估,并且从CNN输出中提取的特征能够显著区分(p值<0.05)有和没有发作间期癫痫样放电的脑电图。我们提出了一种性能优于文献的优化方法,该方法可以帮助临床医生快速诊断癫痫,从而制定适当的治疗方案。