Suppr超能文献

基于头皮脑电图频率子带的发作间期癫痫样棘波检测的深度学习

Deep Learning for Interictal Epileptiform Spike Detection from scalp EEG frequency sub bands.

作者信息

Prasanth Thangavel, Thomas John, Yuvaraj R, Jing Jing, Cash Sydney S, Chaudhari Rima, Leng Tan Yee, Rathakrishnan Rahul, Rohit Srivastava, Saini Vinay, Westover Brandon M, Dauwels Justin

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3703-3706. doi: 10.1109/EMBC44109.2020.9175644.

Abstract

Epilepsy diagnosis through visual examination of interictal epileptiform discharges (IEDs) in scalp electroencephalogram (EEG) signals is a challenging problem. Deep learning methods can be an automated way to perform this task. In this work, we present a new approach based on convolutional neural network (CNN) to detect IEDs from EEGs automatically. The input to CNN is a combination of raw EEG and frequency sub-bands, namely delta, theta, alpha and, beta arranged as a vector for one-dimensional (1D) CNN or matrix for two-dimensional (2D) CNN. The proposed method is evaluated on 554 scalp EEGs. The database consists of 18,164 IEDs marked by two neurologists. Five-fold cross-validation was performed to assess the IED detectors. The resulting 1D CNN based IED detector with multiple sub-bands achieved a false positive rate per minute of 0.23 and a precision of 0.79 at 90% sensitivity. Further, the proposed system is evaluated on datasets from three other clinics, and the features extracted from CNN outputs could significantly discriminate (p-values <; 0.05) the EEGs with and without IEDs. We have proposed an optimized method with better performance than the literature that could aid clinicians to diagnose epilepsy expeditiously, and thereby devise proper treatment.

摘要

通过目视检查头皮脑电图(EEG)信号中的发作间期癫痫样放电(IED)来诊断癫痫是一个具有挑战性的问题。深度学习方法可以成为执行这项任务的一种自动化方式。在这项工作中,我们提出了一种基于卷积神经网络(CNN)的新方法,用于自动从脑电图中检测发作间期癫痫样放电。CNN的输入是原始脑电图和频率子带(即δ、θ、α和β)的组合,它们被排列成一维(1D)CNN的向量或二维(2D)CNN的矩阵。所提出的方法在554份头皮脑电图上进行了评估。该数据库包含由两位神经科医生标记的18164次发作间期癫痫样放电。进行了五折交叉验证以评估发作间期癫痫样放电检测器。基于1D CNN的多子带发作间期癫痫样放电检测器在90%灵敏度下实现了每分钟0.23的假阳性率和0.79的精度。此外,所提出的系统在来自其他三家诊所的数据集上进行了评估,并且从CNN输出中提取的特征能够显著区分(p值<0.05)有和没有发作间期癫痫样放电的脑电图。我们提出了一种性能优于文献的优化方法,该方法可以帮助临床医生快速诊断癫痫,从而制定适当的治疗方案。

相似文献

1
Deep Learning for Interictal Epileptiform Spike Detection from scalp EEG frequency sub bands.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3703-3706. doi: 10.1109/EMBC44109.2020.9175644.
2
Time-Frequency Decomposition of Scalp Electroencephalograms Improves Deep Learning-Based Epilepsy Diagnosis.
Int J Neural Syst. 2021 Aug;31(8):2150032. doi: 10.1142/S0129065721500325. Epub 2021 Jul 16.
3
Automated Detection of Interictal Epileptiform Discharges from Scalp Electroencephalograms by Convolutional Neural Networks.
Int J Neural Syst. 2020 Nov;30(11):2050030. doi: 10.1142/S0129065720500306. Epub 2020 Aug 19.
5
Automated Adult Epilepsy Diagnostic Tool Based on Interictal Scalp Electroencephalogram Characteristics: A Six-Center Study.
Int J Neural Syst. 2021 May;31(5):2050074. doi: 10.1142/S0129065720500744. Epub 2021 Jan 12.
7
Improving automated diagnosis of epilepsy from EEGs beyond IEDs.
J Neural Eng. 2022 Nov 24;19(6). doi: 10.1088/1741-2552/ac9c93.
8
A Two-Stage Automatic System for Detection of Interictal Epileptiform Discharges from Scalp Electroencephalograms.
eNeuro. 2023 Nov 21;10(11). doi: 10.1523/ENEURO.0111-23.2023. Print 2023 Nov.
9
A fast machine learning approach to facilitate the detection of interictal epileptiform discharges in the scalp electroencephalogram.
J Neurosci Methods. 2019 Oct 1;326:108362. doi: 10.1016/j.jneumeth.2019.108362. Epub 2019 Jul 13.
10
Efficient use of clinical EEG data for deep learning in epilepsy.
Clin Neurophysiol. 2021 Jun;132(6):1234-1240. doi: 10.1016/j.clinph.2021.01.035. Epub 2021 Mar 26.

引用本文的文献

2
Artificial intelligence in epilepsy phenotyping.
Epilepsia. 2023 Nov 20. doi: 10.1111/epi.17833.
3
Improved HHT-microstate analysis of EEG in nicotine addicts.
Front Neurosci. 2023 May 24;17:1174399. doi: 10.3389/fnins.2023.1174399. eCollection 2023.
4
An improved BECT spike detection method with functional brain network features based on PLV.
Front Neurosci. 2023 Mar 16;17:1150668. doi: 10.3389/fnins.2023.1150668. eCollection 2023.
6
Time-Frequency Decomposition of Scalp Electroencephalograms Improves Deep Learning-Based Epilepsy Diagnosis.
Int J Neural Syst. 2021 Aug;31(8):2150032. doi: 10.1142/S0129065721500325. Epub 2021 Jul 16.

本文引用的文献

1
Automated Detection of Interictal Epileptiform Discharges from Scalp Electroencephalograms by Convolutional Neural Networks.
Int J Neural Syst. 2020 Nov;30(11):2050030. doi: 10.1142/S0129065720500306. Epub 2020 Aug 19.
2
Computer-assisted EEG diagnostic review for idiopathic generalized epilepsy.
Epilepsy Behav. 2021 Aug;121(Pt B):106556. doi: 10.1016/j.yebeh.2019.106556. Epub 2019 Oct 29.
4
Epilepsy in adults.
Lancet. 2019 Feb 16;393(10172):689-701. doi: 10.1016/S0140-6736(18)32596-0. Epub 2019 Jan 24.
5
EEG CLassification Via Convolutional Neural Network-Based Interictal Epileptiform Event Detection.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:3148-3151. doi: 10.1109/EMBC.2018.8512930.
6
EPILEPTIFORM SPIKE DETECTION VIA CONVOLUTIONAL NEURAL NETWORKS.
Proc IEEE Int Conf Acoust Speech Signal Process. 2016 Mar;2016:754-758. doi: 10.1109/ICASSP.2016.7471776. Epub 2016 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验