Janmohamed Mubeen, Nhu Duong, Kuhlmann Levin, Gilligan Amanda, Tan Chang Wei, Perucca Piero, O'Brien Terence J, Kwan Patrick
Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia.
Brain Commun. 2022 Aug 29;4(5):fcac218. doi: 10.1093/braincomms/fcac218. eCollection 2022.
The application of deep learning approaches for the detection of interictal epileptiform discharges is a nascent field, with most studies published in the past 5 years. Although many recent models have been published demonstrating promising results, deficiencies in descriptions of data sets, unstandardized methods, variation in performance evaluation and lack of demonstrable generalizability have made it difficult for these algorithms to be compared and progress to clinical validity. A few recent publications have provided a detailed breakdown of data sets and relevant performance metrics to exemplify the potential of deep learning in epileptiform discharge detection. This review provides an overview of the field and equips computer and data scientists with a synopsis of EEG data sets, background and epileptiform variation, model evaluation parameters and an awareness of the performance metrics of high impact and interest to the trained clinical and neuroscientist EEG end user. The gold standard and inter-rater disagreements in defining epileptiform abnormalities remain a challenge in the field, and a hierarchical proposal for epileptiform discharge labelling options is recommended. Standardized descriptions of data sets and reporting metrics are a priority. Source code-sharing and accessibility to public EEG data sets will increase the rigour, quality and progress in the field and allow validation and real-world clinical translation.
将深度学习方法应用于发作间期癫痫样放电的检测是一个新兴领域,大多数研究在过去5年发表。尽管最近发表了许多模型,显示出有前景的结果,但数据集描述不足、方法未标准化、性能评估存在差异以及缺乏可证明的通用性,使得这些算法难以进行比较并迈向临床有效性。最近的一些出版物提供了数据集和相关性能指标的详细分类,以例证深度学习在癫痫样放电检测中的潜力。本综述概述了该领域,并为计算机和数据科学家提供了脑电图数据集的概要、背景和癫痫样变异、模型评估参数,以及让训练有素的临床和神经科学家脑电图最终用户了解具有高影响力和关注度的性能指标。在定义癫痫样异常方面的金标准和评分者间的分歧仍然是该领域的一个挑战,建议采用癫痫样放电标记选项的分层提议。数据集的标准化描述和报告指标是优先事项。共享源代码和获取公共脑电图数据集将提高该领域的严谨性、质量和进展,并允许进行验证和实际临床转化。