Zhan Qi, Hu Jingjing, Yu Zitong, Li Xiaobai, Wang Wenjin
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5909-5912. doi: 10.1109/EMBC44109.2020.9175662.
Video-based motion analysis gave rise to contactless respiration rate monitoring that measures subtle respiratory movement from a human chest or belly. In this paper, we revisit this technology via a large video benchmark that includes six categories of practical challenges. We analyze two video properties (i.e. pixel intensity variation and pixel movement) that are essential for respiratory motion analysis and various signal extraction approaches (i.e. from conventional to recent Convolutional Neural Network (CNN)-based methods). We find that pixel movement can better quantify respiratory motion than pixel intensity variation in various conditions. We also conclude that the simple conventional approach (e.g. Zerophase Component Analysis) can achieve better performance than CNN that uses data training to define the extraction of respiration signal, which thus raises a more general question whether CNN can improve video-based physiological signal measurement.
基于视频的运动分析催生了非接触式呼吸率监测技术,该技术可测量人体胸部或腹部的细微呼吸运动。在本文中,我们通过一个包含六类实际挑战的大型视频基准重新审视这项技术。我们分析了呼吸运动分析所需的两个视频属性(即像素强度变化和像素运动)以及各种信号提取方法(即从传统方法到最近基于卷积神经网络(CNN)的方法)。我们发现,在各种条件下,像素运动比像素强度变化能更好地量化呼吸运动。我们还得出结论,简单的传统方法(如零相位分量分析)比使用数据训练来定义呼吸信号提取的CNN能取得更好的性能,这进而引发了一个更普遍的问题,即CNN是否能改善基于视频的生理信号测量。