Suppr超能文献

基于视频分析的冥想练习期间运动和呼吸特征的估计。

Estimation of Motion and Respiratory Characteristics during the Meditation Practice Based on Video Analysis.

机构信息

St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), 199178 St. Petersburg, Russia.

Information Technology and Programming Faculty, ITMO University, 197101 St. Petersburg, Russia.

出版信息

Sensors (Basel). 2021 May 29;21(11):3771. doi: 10.3390/s21113771.

Abstract

Meditation practice is mental health training. It helps people to reduce stress and suppress negative thoughts. In this paper, we propose a camera-based meditation evaluation system, that helps meditators to improve their performance. We rely on two main criteria to measure the focus: the breathing characteristics (respiratory rate, breathing rhythmicity and stability), and the body movement. We introduce a contactless sensor to measure the respiratory rate based on a smartphone camera by detecting the chest keypoint at each frame, using an optical flow based algorithm to calculate the displacement between frames, filtering and de-noising the chest movement signal, and calculating the number of real peaks in this signal. We also present an approach to detecting the movement of different body parts (head, thorax, shoulders, elbows, wrists, stomach and knees). We have collected a non-annotated dataset for meditation practice videos consists of ninety videos and the annotated dataset consists of eight videos. The non-annotated dataset was categorized into beginner and professional meditators and was used for the development of the algorithm and for tuning the parameters. The annotated dataset was used for evaluation and showed that human activity during meditation practice could be correctly estimated by the presented approach and that the mean absolute error for the respiratory rate is around 1.75 BPM, which can be considered tolerable for the meditation application.

摘要

冥想练习是一种心理健康训练。它可以帮助人们减轻压力,抑制消极思想。在本文中,我们提出了一种基于摄像头的冥想评估系统,帮助冥想者提高他们的表现。我们依赖两个主要标准来衡量专注度:呼吸特征(呼吸频率、呼吸节律性和稳定性)和身体运动。我们引入了一种非接触式传感器,通过在每帧中检测胸部关键点,使用基于光流的算法来计算帧之间的位移,对胸部运动信号进行滤波和去噪,并计算该信号中的真实峰值数量,从而基于智能手机摄像头来测量呼吸频率。我们还提出了一种检测不同身体部位(头部、胸部、肩部、肘部、手腕、腹部和膝盖)运动的方法。我们收集了一个非标注的冥想练习视频数据集,包含九十段视频,和一个标注数据集,包含八段视频。非标注数据集被分为初学者和专业冥想者,并用于算法的开发和参数调整。标注数据集用于评估,并表明所提出的方法可以正确估计冥想过程中的人体活动,呼吸率的平均绝对误差约为 1.75 BPM,这在冥想应用中是可以接受的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5681/8199391/eb04122367a6/sensors-21-03771-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验