Suppr超能文献

使用突发间期检测方法识别新生儿脑电图中的交替追踪活动。

Identifying tracé alternant activity in neonatal EEG using an inter-burst detection approach.

作者信息

Raurale Sumit A, Boylan Geraldine B, Lightbody Gordon, O'Toole John M

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5984-5987. doi: 10.1109/EMBC44109.2020.9176147.

Abstract

Electroencephalography (EEG) is an important clinical tool for reviewing sleep-wake cycling in neonates in intensive care. Tracé alternant (TA)-a characteristic pattern of EEG activity during quiet sleep in term neonates-is defined by alternating periods of short-duration, high-voltage activity (bursts) separated by lower-voltage activity (inter-bursts). This study presents a novel approach for detecting TA activity by first detecting the inter-bursts and then processing the temporal map of the bursts and inter-bursts. EEG recordings from 72 healthy term neonates were used to develop and evaluate performance of 1) an inter-burst detection method which is then used for 2) detection of TA activity. First, multiple amplitude and spectral features were combined using a support vector machine (SVM) to classify bursts from inter-bursts within TA activity, resulting in a median area under the operating characteristic curve (AUC) of 0.95 (95% confidence interval, CI: 0.93 to 0.98). Second, post-processing of the continuous SVM output, the confidence score, was used to produce a TA envelope. This envelope was used to detect TA activity within the continuous EEG with a median AUC of 0.84 (95% CI: 0.80 to 0.88). These results validate how an inter-burst detection approach combined with post processing can be used to classify TA activity. Detecting the presence or absence of TA will help quantify disruption of the clinically important sleep-wake cycle.

摘要

脑电图(EEG)是重症监护中用于评估新生儿睡眠-觉醒周期的重要临床工具。交替图形(TA)——足月儿安静睡眠期间脑电图活动的一种特征模式——由短持续时间、高电压活动(爆发)的交替期定义,这些交替期由低电压活动(爆发间期)分隔。本研究提出了一种检测TA活动的新方法,即先检测爆发间期,然后处理爆发和爆发间期的时间图。来自72名健康足月儿的脑电图记录用于开发和评估1)一种爆发间期检测方法的性能,该方法随后用于2)TA活动的检测。首先,使用支持向量机(SVM)组合多个幅度和频谱特征,以区分TA活动中的爆发和爆发间期,得出操作特征曲线(AUC)下的中位数面积为0.95(95%置信区间,CI:0.93至0.98)。其次,对连续的SVM输出(置信度得分)进行后处理,以生成TA包络。该包络用于检测连续脑电图中的TA活动,中位数AUC为0.84(95%CI:0.80至0.88)。这些结果验证了爆发间期检测方法与后处理相结合可用于对TA活动进行分类。检测TA的存在与否将有助于量化临床上重要的睡眠-觉醒周期的中断情况。

相似文献

4
Detection of artifacts from high energy bursts in neonatal EEG.检测新生儿脑电图中高能突发的伪迹。
Comput Biol Med. 2013 Nov;43(11):1804-14. doi: 10.1016/j.compbiomed.2013.07.031. Epub 2013 Aug 22.

本文引用的文献

4
Review of sleep-EEG in preterm and term neonates.早产和足月新生儿睡眠脑电图综述。
Early Hum Dev. 2017 Oct;113:87-103. doi: 10.1016/j.earlhumdev.2017.07.003. Epub 2017 Jul 12.
7
Automated classification of neonatal sleep states using EEG.使用脑电图对新生儿睡眠状态进行自动分类。
Clin Neurophysiol. 2017 Jun;128(6):1100-1108. doi: 10.1016/j.clinph.2017.02.025. Epub 2017 Mar 15.
8
Sleep-wake cycle of the healthy term newborn infant in the immediate postnatal period.健康足月儿出生后即刻的睡眠-觉醒周期。
Clin Neurophysiol. 2016 Apr;127(4):2095-101. doi: 10.1016/j.clinph.2015.12.015. Epub 2015 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验