Falcon-Suarez Ismael Himar, Livo Kurt, Callow Ben, Marin-Moreno Hector, Prasad Manika, Best Angus Ian
National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK.
Colorado School of Mines, Golden, CO, 80401, USA.
Sci Rep. 2020 Oct 5;10(1):16472. doi: 10.1038/s41598-020-73091-3.
Sequestration of industrial carbon dioxide (CO) in deep geological saline aquifers is needed to mitigate global greenhouse gas emissions; monitoring the mechanical integrity of reservoir formations is essential for effective and safe operations. Clogging of fluid transport pathways in rocks from CO-induced salt precipitation reduces injectivity and potentially compromises the reservoir storage integrity through pore fluid pressure build-up. Here, we show that early warning of salt precipitation can be achieved through geophysical remote sensing. From elastic P- and S-wave velocity and electrical resistivity monitoring during controlled laboratory CO injection experiments into brine-saturated quartz-sandstone of high porosity (29%) and permeability (1660 mD), and X-ray CT imaging of pore-scale salt precipitation, we were able to observe, for the first time, how CO-induced salt precipitation leads to detectable geophysical signatures. We inferred salt-induced rock changes from (i) strain changes, (ii) a permanent ~ 1.5% decrease in wave velocities, linking the geophysical signatures to salt volume fraction through geophysical models, and (iii) increases of porosity (by ~ 6%) and permeability (~ 7%). Despite over 10% salt saturation, no clogging effects were observed, which suggests salt precipitation could extend to large sub-surface regions without loss of CO injectivity into high porosity and permeability saline sandstone aquifers.
为了缓解全球温室气体排放,需要将工业二氧化碳(CO₂)封存于深层地质盐水层中;监测储层的机械完整性对于有效且安全的作业至关重要。CO₂ 导致的盐分沉淀会使岩石中的流体传输通道堵塞,从而降低注入能力,并可能通过孔隙流体压力积聚危及储层的存储完整性。在此,我们表明可以通过地球物理遥感实现对盐分沉淀的早期预警。在将 CO₂ 注入孔隙度高(29%)、渗透率高(1660 mD)的盐水饱和石英砂岩的受控实验室实验过程中,通过监测弹性纵波和横波速度以及电阻率,并对孔隙尺度的盐分沉淀进行 X 射线 CT 成像,我们首次得以观察到 CO₂ 导致的盐分沉淀如何产生可检测到的地球物理信号。我们从以下方面推断出盐分引起的岩石变化:(i)应变变化;(ii)波速永久性降低约 1.5%,通过地球物理模型将地球物理信号与盐体积分数联系起来;(iii)孔隙度增加(约 6%)和渗透率增加(约 7%)。尽管盐分饱和度超过 10%,但未观察到堵塞效应,这表明盐分沉淀可能会延伸至大面积的地下区域,而不会降低向高孔隙度和渗透率的盐水砂岩含水层注入 CO₂ 的能力。