Suppr超能文献

基于无监督深度学习的全心脏冠状动脉磁共振图像非刚性呼吸运动估计

Non-Rigid Respiratory Motion Estimation of Whole-Heart Coronary MR Images Using Unsupervised Deep Learning.

出版信息

IEEE Trans Med Imaging. 2021 Jan;40(1):444-454. doi: 10.1109/TMI.2020.3029205. Epub 2020 Dec 29.

Abstract

Non-rigid motion-corrected reconstruction has been proposed to account for the complex motion of the heart in free-breathing 3D coronary magnetic resonance angiography (CMRA). This reconstruction framework requires efficient and accurate estimation of non-rigid motion fields from undersampled images at different respiratory positions (or bins). However, state-of-the-art registration methods can be time-consuming. This article presents a novel unsupervised deep learning-based strategy for fast estimation of inter-bin 3D non-rigid respiratory motion fields for motion-corrected free-breathing CMRA. The proposed 3D respiratory motion estimation network (RespME-net) is trained as a deep encoder-decoder network, taking pairs of 3D image patches extracted from CMRA volumes as input and outputting the motion field between image patches. Using image warping by the estimated motion field, a loss function that imposes image similarity and motion smoothness is adopted to enable training without ground truth motion field. RespME-net is trained patch-wise to circumvent the challenges of training a 3D network volume-wise which requires large amounts of GPU memory and 3D datasets. We perform 5-fold cross-validation with 45 CMRA datasets and demonstrate that RespME-net can predict 3D non-rigid motion fields with subpixel accuracy (0.44 ± 0.38 mm) within ~10 seconds, being ~20 times faster than a GPU-implemented state-of-the-art non-rigid registration method. Moreover, we perform non-rigid motion-compensated CMRA reconstruction for 9 additional patients. The proposed RespME-net has achieved similar motion-corrected CMRA image quality to the conventional registration method regarding coronary artery length and sharpness.

摘要

非刚性运动校正重建方法已经被提出,用于解决自由呼吸式三维冠状动脉磁共振血管造影(CMRA)中心脏的复杂运动问题。该重建框架需要从不同呼吸位置(或 bin)的欠采样图像中高效准确地估计非刚性运动场。然而,最先进的配准方法可能很耗时。本文提出了一种新颖的基于无监督深度学习的策略,用于快速估计运动校正自由呼吸 CMRA 中 bin 间的三维非刚性呼吸运动场。所提出的三维呼吸运动估计网络(RespME-net)被训练为深度编解码器网络,以从 CMRA 体数据集中提取的成对三维图像补丁作为输入,并输出图像补丁之间的运动场。使用估计的运动场进行图像变形,采用施加图像相似性和运动平滑性的损失函数来实现无需地面真实运动场的训练。RespME-net 以补丁为单位进行训练,以避免训练三维网络的挑战,该挑战需要大量的 GPU 内存和三维数据集。我们在 45 个 CMRA 数据集上进行了 5 折交叉验证,结果表明 RespME-net 可以在~10 秒内以亚像素精度(0.44±0.38mm)预测三维非刚性运动场,速度比 GPU 实现的最先进的非刚性配准方法快约 20 倍。此外,我们对 9 名额外患者进行了非刚性运动补偿 CMRA 重建。在冠状动脉长度和清晰度方面,所提出的 RespME-net 达到了与传统配准方法相似的运动校正 CMRA 图像质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验