Suppr超能文献

动物中的艰难梭菌定植及其对宿主粪便微生物群的相关改变。

Clostridioides difficile carriage in animals and the associated changes in the host fecal microbiota.

机构信息

Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.

Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.

出版信息

Anaerobe. 2020 Dec;66:102279. doi: 10.1016/j.anaerobe.2020.102279. Epub 2020 Oct 3.

Abstract

The relationship between the gut microbiota and Clostridioides difficile, and its role in the severity of C. difficile infection in humans is an area of active research. Intestinal carriage of toxigenic and non-toxigenic C. difficile strains, with and without clinical signs, is reported in animals, however few studies have looked at the risk factors associated with C. difficile carriage and the role of the host gut microbiota. Here, we isolated and characterized C. difficile strains from different animal species (predominantly canines (dogs), felines (cats), and equines (horses)) that were brought in for tertiary care at North Carolina State University Veterinary Hospital. C. difficile strains were characterized by toxin gene profiling, fluorescent PCR ribotyping, and antimicrobial susceptibility testing. 16S rRNA gene sequencing was done on animal feces to investigate the relationship between the presence of C. difficile and the gut microbiota in different hosts. Here, we show that C. difficile was recovered from 20.9% of samples (42/201), which included 33 canines, 2 felines, and 7 equines. Over 69% (29/42) of the isolates were toxigenic and belonged to 14 different ribotypes including ones known to cause CDI in humans. The presence of C. difficile results in a shift in the fecal microbial community structure in both canines and equines. Commensal Clostridium hiranonis was negatively associated with C. difficile in canines. Further experimentation showed a clear antagonistic relationship between the two strains in vitro, suggesting that commensal Clostridia might play a role in colonization resistance against C. difficile in different hosts.

摘要

肠道微生物群与艰难梭菌的关系,以及其在人类艰难梭菌感染严重程度中的作用是一个活跃的研究领域。在动物中,有报道称携带产毒和非产毒艰难梭菌菌株(有和没有临床症状),但很少有研究关注与艰难梭菌携带相关的危险因素以及宿主肠道微生物群的作用。在这里,我们从不同动物物种(主要是犬科动物(狗)、猫科动物(猫)和马科动物(马))中分离和鉴定了艰难梭菌菌株,这些动物因三级护理而被带到北卡罗来纳州立大学兽医院。通过毒素基因谱分析、荧光 PCR 核糖体分型和抗菌药物敏感性试验对艰难梭菌菌株进行了鉴定。对动物粪便进行 16S rRNA 基因测序,以研究不同宿主中艰难梭菌与肠道微生物群之间的关系。在这里,我们表明艰难梭菌从 20.9%(42/201)的样本中回收,其中包括 33 只犬、2 只猫和 7 匹马。超过 69%(29/42)的分离物具有产毒性,属于 14 种不同的核糖体型,包括已知导致人类 CDI 的类型。艰难梭菌的存在导致犬科动物和马科动物粪便微生物群落结构发生变化。共生梭状芽胞杆菌与犬科动物中的艰难梭菌呈负相关。进一步的实验表明,两种菌株在体外存在明显的拮抗关系,这表明共生梭状芽胞杆菌可能在不同宿主中对艰难梭菌的定植抵抗发挥作用。

相似文献

1
Clostridioides difficile carriage in animals and the associated changes in the host fecal microbiota.
Anaerobe. 2020 Dec;66:102279. doi: 10.1016/j.anaerobe.2020.102279. Epub 2020 Oct 3.
4
Dogs are carriers of Clostridioides difficile lineages associated with human community-acquired infections.
Anaerobe. 2021 Feb;67:102317. doi: 10.1016/j.anaerobe.2020.102317. Epub 2021 Jan 6.
5
Prevalence, genetic characteristics, and antimicrobial resistance of Clostridioides difficile isolates from horses in Korea.
Anaerobe. 2023 Apr;80:102700. doi: 10.1016/j.anaerobe.2023.102700. Epub 2023 Jan 27.
8
Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolates from two Korean hospitals.
PLoS One. 2017 Mar 29;12(3):e0174716. doi: 10.1371/journal.pone.0174716. eCollection 2017.
9
Molecular epidemiology of in companion animals: Genetic overlap with human strains and public health concerns.
Front Public Health. 2023 Jan 6;10:1070258. doi: 10.3389/fpubh.2022.1070258. eCollection 2022.

引用本文的文献

2
Antimicrobial resistance of in veterinary medicine around the world: A scoping review of minimum inhibitory concentrations.
One Health. 2024 Jul 20;19:100860. doi: 10.1016/j.onehlt.2024.100860. eCollection 2024 Dec.
3
Prevalence of in Canine Feces and Its Association with Intestinal Dysbiosis.
Animals (Basel). 2023 Jul 28;13(15):2441. doi: 10.3390/ani13152441.
4
Canine Fecal Microbiota Transplantation: Current Application and Possible Mechanisms.
Vet Sci. 2022 Jul 30;9(8):396. doi: 10.3390/vetsci9080396.
5
Domestic Environment and Gut Microbiota: Lessons from Pet Dogs.
Microorganisms. 2022 Apr 30;10(5):949. doi: 10.3390/microorganisms10050949.
6
Analysis of the gut microbiome in dogs and cats.
Vet Clin Pathol. 2022 Feb;50 Suppl 1(Suppl 1):6-17. doi: 10.1111/vcp.13031. Epub 2021 Sep 12.

本文引用的文献

1
Stan: A Probabilistic Programming Language.
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
3
Trends in U.S. Burden of Infection and Outcomes.
N Engl J Med. 2020 Apr 2;382(14):1320-1330. doi: 10.1056/NEJMoa1910215.
4
() in animals.
J Vet Diagn Invest. 2020 Mar;32(2):213-221. doi: 10.1177/1040638719899081. Epub 2020 Jan 6.
5
in Food-Producing Animals, Horses and Household Pets: A Comprehensive Review.
Microorganisms. 2019 Dec 9;7(12):667. doi: 10.3390/microorganisms7120667.
7
Gut microbiota features associated with Clostridioides difficile colonization in puppies.
PLoS One. 2019 Aug 30;14(8):e0215497. doi: 10.1371/journal.pone.0215497. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验