Interaction Lab, University of Southern California, Los Angeles, CA 90089, USA.
Sci Robot. 2020 Feb 26;5(39). doi: 10.1126/scirobotics.aaz3791.
Socially assistive robotics (SAR) has great potential to provide accessible, affordable, and personalized therapeutic interventions for children with autism spectrum disorders (ASD). However, human-robot interaction (HRI) methods are still limited in their ability to autonomously recognize and respond to behavioral cues, especially in atypical users and everyday settings. This work applies supervised machine-learning algorithms to model user engagement in the context of long-term, in-home SAR interventions for children with ASD. Specifically, we present two types of engagement models for each user: (i) generalized models trained on data from different users and (ii) individualized models trained on an early subset of the user's data. The models achieved about 90% accuracy (AUROC) for post hoc binary classification of engagement, despite the high variance in data observed across users, sessions, and engagement states. Moreover, temporal patterns in model predictions could be used to reliably initiate reengagement actions at appropriate times. These results validate the feasibility and challenges of recognition and response to user disengagement in long-term, real-world HRI settings. The contributions of this work also inform the design of engaging and personalized HRI, especially for the ASD community.
社交辅助机器人 (SAR) 具有为自闭症谱系障碍 (ASD) 儿童提供可及、负担得起和个性化治疗干预的巨大潜力。然而,人机交互 (HRI) 方法在自主识别和响应行为线索方面的能力仍然有限,特别是在非典型用户和日常环境中。这项工作应用监督机器学习算法来模拟自闭症儿童长期家庭 SAR 干预背景下的用户参与度。具体来说,我们为每个用户呈现了两种类型的参与模型:(i) 基于不同用户数据训练的通用模型,以及 (ii) 基于用户早期数据子集训练的个性化模型。尽管用户、会话和参与状态之间的数据存在高度差异,但这些模型在事后进行的参与度二分法分类中达到了约 90%的准确率 (AUROC)。此外,模型预测中的时间模式可用于在适当的时间可靠地启动重新参与操作。这些结果验证了在长期真实世界 HRI 环境中识别和响应用户脱机的可行性和挑战。这项工作的贡献还为吸引人且个性化的 HRI 设计提供了信息,特别是针对 ASD 社区。