Suppr超能文献

机器学习预测肢端肥大症患者手术后早期缓解:一项多中心研究。

Machine learning in predicting early remission in patients after surgical treatment of acromegaly: a multicenter study.

机构信息

Department of Neurosurgery, Shanghai Medical School, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China.

Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.

出版信息

Pituitary. 2021 Feb;24(1):53-61. doi: 10.1007/s11102-020-01086-4. Epub 2020 Oct 6.

Abstract

PURPOSE

Accurate prediction of postoperative remission is beneficial for effective patient-physician communication in acromegalic patients. This study aims to train and validate machine learning prediction models for early endocrine remission of acromegalic patients.

METHODS

The training cohort included 833 patients with growth hormone (GH) secreting pituitary adenoma from 2010 to 2018. We trained a partial model (only using pre-operative variables) and a full model (using all variables) to predict off-medication endocrine remission at six-month follow-up after surgery using multiple algorithms. The models were validated in 99 prospectively collected patients from a second campus and 52 patients from a third institution.

RESULTS

C-statistic and the accuracy of the best partial model was 0.803 (95% CI 0.757-0.849) and 72.5% (95% CI 67.6-77.5%), respectively. C-statistic and the accuracy of the best full model was 0.888 (95% CI 0.861-0.914) and 80.3% (95% CI 77.5-83.1%), respectively. The c-statistics (and accuracy) of using only Knosp grade, total resection, or postoperative day 1 GH level as the single predictor were lower than our partial model or full model (p < 0.001). C-statistics remained similar in the prospective cohort (partial model 0.798, and full model 0.903) and in the external cohort (partial model 0.771, and full model 0.871). A web-based application integrated with the trained models was published at  https://deepvep.shinyapps.io/Acropred/ .

CONCLUSION

We developed and validated interpretable and applicable machine learning models to predict early endocrine remission after surgical resection of a GH-secreting pituitary adenoma. Predication accuracy of the trained models were better than those using single variables.

摘要

目的

准确预测术后缓解对肢端肥大症患者的医患有效沟通有益。本研究旨在训练和验证用于预测肢端肥大症患者术后早期内分泌缓解的机器学习预测模型。

方法

训练队列纳入了 2010 年至 2018 年间的 833 例生长激素(GH)分泌性垂体腺瘤患者。我们使用多种算法训练了一个部分模型(仅使用术前变量)和一个全模型(使用所有变量),以预测术后 6 个月停药时的内分泌缓解。在第二个校区的 99 例前瞻性收集的患者和第三个机构的 52 例患者中对模型进行了验证。

结果

最佳部分模型的 C 统计量和准确性分别为 0.803(95%CI 0.757-0.849)和 72.5%(95%CI 67.6-77.5%)。最佳全模型的 C 统计量和准确性分别为 0.888(95%CI 0.861-0.914)和 80.3%(95%CI 77.5-83.1%)。仅使用 Knosp 分级、全切或术后第 1 天 GH 水平作为单一预测因子的 C 统计量(和准确性)均低于我们的部分模型或全模型(p<0.001)。在前瞻性队列中(部分模型 0.798,全模型 0.903)和外部队列中(部分模型 0.771,全模型 0.871),C 统计量保持相似。一个集成了训练模型的基于网络的应用程序已发布在 https://deepvep.shinyapps.io/Acropred/ 上。

结论

我们开发并验证了可解释且适用的机器学习模型,以预测 GH 分泌性垂体腺瘤手术后的早期内分泌缓解。训练模型的预测准确性优于使用单变量的模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验