Suppr超能文献

使用张量奇异值分解去噪原子分辨率4D扫描透射电子显微镜数据。

Denoising atomic resolution 4D scanning transmission electron microscopy data with tensor singular value decomposition.

作者信息

Zhang Chenyu, Han Rungang, Zhang Anru R, Voyles Paul M

机构信息

Department of Materials Science and Engineering, University of Wisconsin-Madison, United States of America.

Department of Statistics, University of Wisconsin-Madison, United States of America.

出版信息

Ultramicroscopy. 2020 Dec;219:113123. doi: 10.1016/j.ultramic.2020.113123. Epub 2020 Sep 25.

Abstract

Tensor singular value decomposition (SVD) is a method to find a low-dimensional representation of data with meaningful structure in three or more dimensions. Tensor SVD has been applied to denoise atomic-resolution 4D scanning transmission electron microscopy (4D STEM) data. On data simulated from a SrTiO [100] perfect crystal and a Si [110] edge dislocation, tensor SVD achieved an average peak signal-to-noise ratio (PSNR) of ~40 dB, which matches or exceeds the performance of other denoising methods, with processing times at least 100 times shorter. On experimental data from SrTiO [100] and LiZnSb [112¯0]/GaSb [110] samples, tensor SVD denoises multiple GB 4D STEM data sets in ten minutes on a typical personal computer. Denoising with tensor SVD improves both convergent beam electron diffraction patterns and virtual-aperture annular dark field images.

摘要

张量奇异值分解(SVD)是一种用于在三维或更多维度中找到具有有意义结构的数据的低维表示的方法。张量SVD已应用于对原子分辨率4D扫描透射电子显微镜(4D STEM)数据进行去噪。在从SrTiO [100]完美晶体和Si [110]边缘位错模拟的数据上,张量SVD实现了约40 dB的平均峰值信噪比(PSNR),这与其他去噪方法的性能相当或超过其他方法,且处理时间至少短100倍。在来自SrTiO [100]和LiZnSb [112¯0]/GaSb [110]样品的实验数据上,张量SVD在典型的个人计算机上十分钟内即可对多个GB的4D STEM数据集进行去噪。使用张量SVD进行去噪可改善会聚束电子衍射图案和虚拟孔径环形暗场图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验