Suppr超能文献

用于加速纳米颗粒表征的自动图像分割

Automated image segmentation for accelerated nanoparticle characterization.

作者信息

Day Alexandra L, Wahl Carolin B, Dos Reis Roberto, Liao Wei-Keng, Li Youjia, Kilic Muhammed Nur Talha, Mirkin Chad A, Dravid Vinayak P, Choudhary Alok, Agrawal Ankit

机构信息

Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA.

Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.

出版信息

Sci Rep. 2025 May 17;15(1):17180. doi: 10.1038/s41598-025-01337-z.

Abstract

Recent developments in materials science have made it possible to synthesize millions of individual nanoparticles on a chip. However, many steps in the characterization process still require extensive human input. To address this challenge, we present an automated image processing pipeline that optimizes high-throughput nanoparticle characterization using intelligent image segmentation and coordinate generation. The proposed method can rapidly analyze each image and return optimized acquisition coordinates suitable for multiple analytical STEM techniques, including 4D-STEM, EELS, and EDS. The pipeline employs computer vision and unsupervised learning to remove the image background, segment the particle into areas of interest, and generate acquisition coordinates. This approach eliminates the need for uniform grid sampling, focusing data collection on regions of interest. We validated our approach using a diverse dataset of over 900 high-resolution grayscale nanoparticle images, achieving a 96.0% success rate based on expert-validated criteria. Using established 4D-STEM acquisition times as a baseline, our method demonstrates a 25.0 to 29.1-fold reduction in total processing time. By automating this crucial preprocessing step and optimizing data acquisition, our pipeline significantly accelerates materials characterization workflows while reducing unnecessary data collection.

摘要

材料科学的最新进展使得在芯片上合成数百万个单个纳米颗粒成为可能。然而,表征过程中的许多步骤仍然需要大量人工参与。为应对这一挑战,我们提出了一种自动化图像处理流程,该流程利用智能图像分割和坐标生成来优化高通量纳米颗粒表征。所提出的方法可以快速分析每张图像,并返回适用于多种分析型扫描透射电子显微镜(STEM)技术的优化采集坐标,包括四维扫描透射电子显微镜(4D-STEM)、电子能量损失谱(EELS)和能谱仪(EDS)。该流程采用计算机视觉和无监督学习来去除图像背景、将颗粒分割为感兴趣区域并生成采集坐标。这种方法无需均匀网格采样,而是将数据收集集中在感兴趣区域。我们使用包含900多张高分辨率灰度纳米颗粒图像的多样化数据集对我们的方法进行了验证,基于专家验证标准,成功率达到了96.0%。以既定的4D-STEM采集时间为基线,我们的方法表明总处理时间减少了25.0至29.1倍。通过自动化这一关键的预处理步骤并优化数据采集,我们的流程显著加速了材料表征工作流程,同时减少了不必要的数据收集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb7a/12085630/dab2ef695767/41598_2025_1337_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验