Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
Biophys J. 2020 Oct 20;119(8):1474-1480. doi: 10.1016/j.bpj.2020.09.007. Epub 2020 Sep 16.
The air sensitivity of many substrates, and specifically biosurfaces, presents an experimental challenge for their analysis by vibrational spectroscopy and, in particular, infrared microscopy on a nanometer scale. The recent development of atomic-force-microscopy-based infrared spectroscopy (AFM-IR), which circumvents the Abbe diffraction limit, allows nanoscale chemical characterization of surfaces. Additionally, this technique has been shown to work for thin films under aqueous environments but is limited to substrates up to 10 nm thick, thus ruling out application to many biological surfaces. To circumvent this restriction, we have utilized hydrogels to cover such surfaces and maintain a more physiologically representative environment for biological substrates. We show that it is feasible to use AFM-IR to chemically characterize this type of substrate buried under a thin hydrogel film. Specifically, this work describes the AFM-IR spectra of red blood cells under polyvinyl alcohol hydrogels.
许多基质(特别是生物表面)对空气敏感,这给通过振动光谱,特别是在纳米尺度上的红外显微镜分析它们带来了实验挑战。最近开发的基于原子力显微镜的红外光谱(AFM-IR),规避了阿贝衍射极限,允许对表面进行纳米级化学特性分析。此外,该技术已被证明可在水相环境下用于薄膜,但仅限于厚度达 10nm 的基底,因此排除了对许多生物表面的应用。为了规避这一限制,我们利用水凝胶来覆盖这些表面,并为生物基底保持更具生理代表性的环境。我们证明,使用 AFM-IR 对埋在薄水凝胶膜下的这种类型的基底进行化学特性分析是可行的。具体来说,这项工作描述了红细胞在聚乙烯醇水凝胶下的 AFM-IR 光谱。