Suppr超能文献

用于与迷走神经进行功能特异性连接的神经内超微电极阵列。

Intraneural ultramicroelectrode arrays for function-specific interfacing to the vagus nerve.

作者信息

Ghazavi Atefeh, González-González Maria A, Romero-Ortega Mario I, Cogan Stuart F

机构信息

Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA.

Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.

出版信息

Biosens Bioelectron. 2020 Dec 15;170:112608. doi: 10.1016/j.bios.2020.112608. Epub 2020 Sep 22.

Abstract

Selective interfacing to small multifunctional nerves such as the vagus nerve (VN) which is the main multimodal autonomic nerve that provides a major communication pathway from vital peripheral organs to the brain, can have significant potential in treating and diagnosing diseases as well as enhancing our understanding of peripheral nerve circuits. Here we describe the fabrication of a 16-channel intraneural electrode array with ultramicro-dimensioned electrodes to achieve improved functionally selective recording. We demonstrate that the amorphous silicon carbide ultramicroelectrode arrays (a-SiC UMEAs) provide selectivity in the detection of neural activity in the cVN related to changes in systemic oxygenation and blood pressure. We will also demonstrate spatially selective recording of micro-compound action potentials (μCAPs) by electrical stimulation of the subdiaphragmatic branches of the VN. Distinct neural activity was recorded on electrodes separated by less than about 100 μm. This is the first time that this level of spatially selectivity recording has been demonstrated in the cVN with an intraneural multielectrode array.

摘要

与小型多功能神经(如迷走神经(VN))进行选择性连接具有巨大潜力,迷走神经是主要的多模式自主神经,为从重要外周器官到大脑的主要通信通路。这在疾病治疗和诊断以及增进我们对周围神经回路的理解方面都有重要意义。在此,我们描述了一种具有超微尺寸电极的16通道神经内电极阵列的制造方法,以实现功能选择性记录的改进。我们证明非晶硅碳超微电极阵列(a-SiC UMEAs)在检测与全身氧合和血压变化相关的迷走神经中枢(cVN)神经活动时具有选择性。我们还将通过电刺激膈下迷走神经分支来展示微复合动作电位(μCAPs)的空间选择性记录。在间距小于约100μm的电极上记录到了不同的神经活动。这是首次使用神经内多电极阵列在迷走神经中枢展示出这种水平的空间选择性记录。

相似文献

1
Intraneural ultramicroelectrode arrays for function-specific interfacing to the vagus nerve.
Biosens Bioelectron. 2020 Dec 15;170:112608. doi: 10.1016/j.bios.2020.112608. Epub 2020 Sep 22.
4
A flexible, thin-film microchannel electrode array device for selective subdiaphragmatic vagus nerve recording.
Microsyst Nanoeng. 2024 Jan 23;10:16. doi: 10.1038/s41378-023-00637-6. eCollection 2024.
5
Model-based geometrical optimisation and in vivo validation of a spatially selective multielectrode cuff array for vagus nerve neuromodulation.
J Neurosci Methods. 2021 Mar 15;352:109079. doi: 10.1016/j.jneumeth.2021.109079. Epub 2021 Jan 28.
7
Flexible multichannel vagus nerve electrode for stimulation and recording for heart failure treatment.
Biosens Bioelectron. 2018 Jul 30;112:114-119. doi: 10.1016/j.bios.2018.04.043. Epub 2018 Apr 20.
8
Neural Stimulation Hardware for the Selective Intrafascicular Modulation of the Vagus Nerve.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:4449-4458. doi: 10.1109/TNSRE.2023.3329735. Epub 2023 Nov 14.
9
Amorphous silicon carbide ultramicroelectrode arrays for neural stimulation and recording.
J Neural Eng. 2018 Feb;15(1):016007. doi: 10.1088/1741-2552/aa8f8b.
10
A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats.
Brain Res Bull. 2000 Mar 1;51(4):293-306. doi: 10.1016/s0361-9230(99)00231-2.

引用本文的文献

1
Multidimensional advances in neural interface technology for peripheral nerve repair: From material innovation to clinical translation.
Mater Today Bio. 2025 Jul 14;34:102092. doi: 10.1016/j.mtbio.2025.102092. eCollection 2025 Oct.
2
Bioelectronic modulation of carotid sinus nerve to treat type 2 diabetes: current knowledge and future perspectives.
Front Neurosci. 2024 Apr 5;18:1378473. doi: 10.3389/fnins.2024.1378473. eCollection 2024.
5
A Novel 3D Helical Microelectrode Array for In Vitro Extracellular Action Potential Recording.
Micromachines (Basel). 2022 Oct 8;13(10):1692. doi: 10.3390/mi13101692.
6
Insertion mechanics of amorphous SiC ultra-micro scale neural probes.
J Neural Eng. 2022 Apr 8;19(2). doi: 10.1088/1741-2552/ac5bf4.

本文引用的文献

1
Enhancing plasticity in central networks improves motor and sensory recovery after nerve damage.
Nat Commun. 2019 Dec 19;10(1):5782. doi: 10.1038/s41467-019-13695-0.
2
Arterial Baroreceptors Sense Blood Pressure through Decorated Aortic Claws.
Cell Rep. 2019 Nov 19;29(8):2192-2201.e3. doi: 10.1016/j.celrep.2019.10.040.
4
High-charge-capacity sputtered iridium oxide neural stimulation electrodes deposited using water vapor as a reactive plasma constituent.
J Biomed Mater Res B Appl Biomater. 2020 Apr;108(3):880-891. doi: 10.1002/jbm.b.34442. Epub 2019 Jul 28.
5
Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording.
Sci Adv. 2019 Apr 19;5(4):eaaw1066. doi: 10.1126/sciadv.aaw1066. eCollection 2019 Apr.
7
Electroceutical Targeting of the Autonomic Nervous System.
Physiology (Bethesda). 2019 Mar 1;34(2):150-162. doi: 10.1152/physiol.00030.2018.
8
Recording and Decoding of Vagal Neural Signals Related to Changes in Physiological Parameters and Biomarkers of Disease.
Cold Spring Harb Perspect Med. 2019 Dec 2;9(12):a034157. doi: 10.1101/cshperspect.a034157.
9
Thin Film Multi-Electrode Softening Cuffs for Selective Neuromodulation.
Sci Rep. 2018 Nov 6;8(1):16390. doi: 10.1038/s41598-018-34566-6.
10
Effect of oxidation on intrinsic residual stress in amorphous silicon carbide films.
J Biomed Mater Res B Appl Biomater. 2019 Jul;107(5):1654-1661. doi: 10.1002/jbm.b.34258. Epub 2018 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验