Suppr超能文献

用于神经刺激和记录的非晶硅碳化硅超微电极阵列。

Amorphous silicon carbide ultramicroelectrode arrays for neural stimulation and recording.

机构信息

Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States of America.

出版信息

J Neural Eng. 2018 Feb;15(1):016007. doi: 10.1088/1741-2552/aa8f8b.

Abstract

OBJECTIVE

Foreign body response to indwelling cortical microelectrodes limits the reliability of neural stimulation and recording, particularly for extended chronic applications in behaving animals. The extent to which this response compromises the chronic stability of neural devices depends on many factors including the materials used in the electrode construction, the size, and geometry of the indwelling structure. Here, we report on the development of microelectrode arrays (MEAs) based on amorphous silicon carbide (a-SiC).

APPROACH

This technology utilizes a-SiC for its chronic stability and employs semiconductor manufacturing processes to create MEAs with small shank dimensions. The a-SiC films were deposited by plasma enhanced chemical vapor deposition and patterned by thin-film photolithographic techniques. To improve stimulation and recording capabilities with small contact areas, we investigated low impedance coatings on the electrode sites. The assembled devices were characterized in phosphate buffered saline for their electrochemical properties.

MAIN RESULTS

MEAs utilizing a-SiC as both the primary structural element and encapsulation were fabricated successfully. These a-SiC MEAs had 16 penetrating shanks. Each shank has a cross-sectional area less than 60 µm and electrode sites with a geometric surface area varying from 20 to 200 µm. Electrode coatings of TiN and SIROF reduced 1 kHz electrode impedance to less than 100 kΩ from ~2.8 MΩ for 100 µm Au electrode sites and increased the charge injection capacities to values greater than 3 mC cm. Finally, we demonstrated functionality by recording neural activity from basal ganglia nucleus of Zebra Finches and motor cortex of rat.

SIGNIFICANCE

The a-SiC MEAs provide a significant advancement in the development of microelectrodes that over the years has relied on silicon platforms for device manufacture. These flexible a-SiC MEAs have the potential for decreased tissue damage and reduced foreign body response. The technique is promising and has potential for clinical translation and large scale manufacturing.

摘要

目的

驻留皮质微电极的异物反应限制了神经刺激和记录的可靠性,尤其是对于行为动物的扩展慢性应用。这种反应对神经设备慢性稳定性的影响取决于许多因素,包括电极结构中使用的材料、驻留结构的大小和几何形状。在这里,我们报告了基于非晶硅碳化硅 (a-SiC) 的微电极阵列 (MEA) 的开发。

方法

这项技术利用 a-SiC 的慢性稳定性,并采用半导体制造工艺来制造具有小柄尺寸的 MEA。a-SiC 薄膜通过等离子体增强化学气相沉积沉积,并通过薄膜光刻技术进行图案化。为了提高小接触面积的刺激和记录能力,我们研究了电极部位的低阻抗涂层。组装后的器件在磷酸盐缓冲盐中进行电化学特性表征。

主要结果

成功制造了同时使用 a-SiC 作为主要结构元件和封装的 MEA。这些 a-SiC MEA 有 16 个穿透柄。每个柄的横截面积小于 60 µm,电极部位的几何表面积从 20 到 200 µm 不等。TiN 和 SIROF 电极涂层将 1 kHz 电极阻抗从 100 µm Au 电极部位的约 2.8 MΩ降低到小于 100 kΩ,并将电荷注入容量增加到大于 3 mC cm 的值。最后,我们通过记录斑马雀基底神经节核和大鼠运动皮层的神经活动证明了功能。

意义

a-SiC MEA 在微电极的开发方面取得了重大进展,多年来,微电极的开发一直依赖于硅平台进行器件制造。这些柔性 a-SiC MEA 具有降低组织损伤和减少异物反应的潜力。该技术很有前途,具有临床转化和大规模制造的潜力。

相似文献

1
Amorphous silicon carbide ultramicroelectrode arrays for neural stimulation and recording.
J Neural Eng. 2018 Feb;15(1):016007. doi: 10.1088/1741-2552/aa8f8b.
2
Planar amorphous silicon carbide microelectrode arrays for chronic recording in rat motor cortex.
Biomaterials. 2024 Jul;308:122543. doi: 10.1016/j.biomaterials.2024.122543. Epub 2024 Mar 21.
4
Evaluation of Amorphous Silicon Carbide on Utah Electrode Arrays by Thermal Accelerated Aging.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:6623-6626. doi: 10.1109/EMBC46164.2021.9629701.
5
A silicon carbide array for electrocorticography and peripheral nerve recording.
J Neural Eng. 2017 Oct;14(5):056006. doi: 10.1088/1741-2552/aa7698. Epub 2017 Jun 2.
6
Fabrication of a Monolithic Implantable Neural Interface from Cubic Silicon Carbide.
Micromachines (Basel). 2019 Jun 29;10(7):430. doi: 10.3390/mi10070430.
8
In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays.
Biomed Mater. 2010 Feb;5(1):15007. doi: 10.1088/1748-6041/5/1/015007. Epub 2010 Feb 3.
9
Plasma-enhanced chemical vapor deposited silicon carbide as an implantable dielectric coating.
J Biomed Mater Res A. 2003 Dec 1;67(3):856-67. doi: 10.1002/jbm.a.10152.
10
Ultrasoft microwire neural electrodes improve chronic tissue integration.
Acta Biomater. 2017 Apr 15;53:46-58. doi: 10.1016/j.actbio.2017.02.010. Epub 2017 Feb 6.

引用本文的文献

1
Monolithic three-dimensional neural probes from deterministic rolling of soft electronics.
Nat Electron. 2025 Aug;8(8):721-737. doi: 10.1038/s41928-025-01431-0. Epub 2025 Aug 11.
2
Failure behavior of polymer microelectrode arrays encapsulated with conventional ALD and 3D-ALI barriers.
Front Bioeng Biotechnol. 2025 Jul 24;13:1622927. doi: 10.3389/fbioe.2025.1622927. eCollection 2025.
5
Enhanced Performance of Novel Amorphous Silicon Carbide Microelectrode Arrays in Rat Motor Cortex.
Micromachines (Basel). 2025 Jan 21;16(2):113. doi: 10.3390/mi16020113.
7
Parasitic Capacitance in High-Density Neural Electrode Arrays: Sources and Evaluation Methods.
IEEE Trans Biomed Eng. 2025 Feb;72(2):794-802. doi: 10.1109/TBME.2024.3472708. Epub 2025 Jan 21.
8
Charge Injection Enhancement Comparisons of Iridium Oxide Microelectrodes and Using a Portable Neurostimulator.
Int IEEE EMBS Conf Neural Eng. 2023 Apr;2023. doi: 10.1109/ner52421.2023.10123832. Epub 2023 May 19.
9
Planar amorphous silicon carbide microelectrode arrays for chronic recording in rat motor cortex.
Biomaterials. 2024 Jul;308:122543. doi: 10.1016/j.biomaterials.2024.122543. Epub 2024 Mar 21.

本文引用的文献

1
Chronic in vivo stability assessment of carbon fiber microelectrode arrays.
J Neural Eng. 2016 Dec;13(6):066002. doi: 10.1088/1741-2560/13/6/066002. Epub 2016 Oct 5.
2
In vivo Characterization of Amorphous Silicon Carbide As a Biomaterial for Chronic Neural Interfaces.
Front Neurosci. 2016 Jun 28;10:301. doi: 10.3389/fnins.2016.00301. eCollection 2016.
3
SiC protective coating for photovoltaic retinal prosthesis.
J Neural Eng. 2016 Aug;13(4):046016. doi: 10.1088/1741-2560/13/4/046016. Epub 2016 Jun 21.
4
Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers.
PLoS One. 2016 May 9;11(5):e0155109. doi: 10.1371/journal.pone.0155109. eCollection 2016.
5
Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates.
J Neural Eng. 2016 Apr;13(2):026003. doi: 10.1088/1741-2560/13/2/026003. Epub 2016 Jan 29.
6
Chronic in-vivo testing of a 16-channel implantable wireless neural stimulator.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:1017-20. doi: 10.1109/EMBC.2015.7318537.
7
Chronic and low charge injection wireless intraneural stimulation in vivo.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:1013-6. doi: 10.1109/EMBC.2015.7318536.
8
A Multimodal, SU-8 - Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology.
PLoS One. 2015 Dec 18;10(12):e0145307. doi: 10.1371/journal.pone.0145307. eCollection 2015.
9
Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings.
J Neural Eng. 2015 Aug;12(4):046009. doi: 10.1088/1741-2560/12/4/046009. Epub 2015 Jun 2.
10
The effect of electrode geometry on electrochemical properties measured in saline.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6850-3. doi: 10.1109/EMBC.2014.6945202.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验